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ABSTRACT

Near-field compensated higher order Ambisonics (HOA) is an
approach to the physical synthesis of sound fields. The typical
interpretation of the modern HOA approach is that the sound
field to be synthesized and the spatio-temporal transfer function
of the employed loudspeakers are expanded into series of spheri-
cal harmonics in order to determine the loudspeaker driving sig-
nals for spherical arrays. Going one level higher in abstraction,
HOA can be interpreted as the single-layer potential solution to
the problem which is solved via a formulation of the reproduc-
tion equation in a spatial frequency domain which is selected ac-
cording to the geometry of the loudspeaker array. For spherical
arrays, this spatial frequency domain is the spherical harmon-
ics domain. The presented paper provides an overview over a
recent extension of this approach to the employment of planar
and linear loudspeaker arrays. In this latter situation, the solu-
tion is obtain via a formulation of the reproduction equation in
wavenumber domain.

1. INTRODUCTION

Near-field compensated higher order Ambisonics (HOA) and
wave field synthesis (WFS) constitute the two best known repre-
sentatives of analytical methods for sound field synthesis. WFS
directly implements fundamental physical principles like the
Rayleigh integrals or the Kirchhoff-Helmholtz integral [1,2] and
thus the possibilities and limitations of WFS can be deduced in
an abstract manner from the physical fundamentals.

HOA on the other hand was developed from rather intu-
itive yet physical considerations [3]. The theory was later ex-
tended [4] and recently a solid physical interpretation in terms of
thesingle-layer potentialsolution was found [5] which retroac-
tively justifies the approach.

High-resolution HOA formulations such as [4–6] provide
solutions only for spherical and circular arrays of loudspeak-
ers. The operator theory which is applied in the single-layer
potential solution enables the employment of arbitrarily shaped,
simply enclosing loudspeaker contours [7] which greatly extends
the flexibility of the HOA approach. This paper presents an ex-
tension of the Ambisonics approach to planar and linear loud-
speaker contours which constitute special cases in the theory of
single-layer potentials.

For convenience, we use the termAmbisonicsin the remain-
der in order to refer to HOA. As discussed in Sec. 6, the notion
of discreteordersis not suitable in the context of this paper.

2. AMBISONICS WITH SPHERICAL SECONDARY
SOURCE DISTRIBUTIONS

This section reviews modern formulations of Ambisonics such
as [5,6] for illustration purposes. At first stage, these approaches
assume a continuous spherical distribution of secondary sources.
This continuous distribution is then discretized in order to find
the loudspeaker driving signals. The discretization operation is
not treated in this paper. We will therefore refer tosecondary
sourcesrather than to loudspeakers in order to emphasize the
continuous property.

The reproduction equationformulated for a spherical sec-
ondary source contour of radiusR centered around the coordi-
nate origin is given by [6]

S(x, ω) =

2π∫

0

π∫

0

D (x0, ω) G (x− x0, ω) sin β dβ dα , (1)

whereby D (x0, ω) denotes the driving signal and
G (x− x0, ω) the spatio-temporal transfer function
of the secondary source located atx0 with x0 =
R [cos α0 sin β0 sin α0 sin β0 cos β0]

T . α0 and β0 de-
note the azimuth and colatitude of the secondary source
position. S(x, ω) denotes the synthesized sound field. In order
that (1) is validG (x− x0, ω) has to be invariant with respect
to rotation around the coordinate origin [6].

The objective is to find the appropriate driving signals
D (x0, ω) such that a given desired sound fieldS(x, ω) is prop-
erly synthesized.

Eq. (1) can be interpreted as a convolution along the surface
of a sphere so that the convolution theorem

S̊
m
n (r, ω) = 2πR

√

4π

2n + 1
D̊

m
n (ω) · G̊0

n(r, ω) , (2)

employing the spherical harmonics expansion coefficients of
S(x, ω), D (x, ω), and G (x− x0|r=R, ω) respectively ap-
plies [8].

In the interior domain, a sound fieldS(x, ω) can be repre-
sented by the spherical harmonics coefficientsS̊m

n (r, ω) or co-
efficientsS̆m

n (ω) respectively as

S(x, ω) =

∞∑

n=0

n∑
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n (ω) jn
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r

)
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= S̊m
n

(r,ω)

Y
m

n (β, α) , (3)
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with Y m
n (β, α) denoting then-th orderm-th degree spherical

harmonic [9].
After reordering (2), it can be shown that [6]

D̊
m
n (ω) =

1

2πR

√

2n + 1

4π

S̆m
n (ω)

Ğ0
n(ω)

. (4)

The secondary source driving functionD(α, β, ω) for three-
dimensional reproduction of a desired sound field with expan-
sion coefficients̆Sm

n (ω) is then

D(α, β, ω) =

∞∑

n=0

n∑

m=−n

1

2πR
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S̆m
n (ω)

Ğ0
n(ω)
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= D̊m
n

(ω)

Y
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n (β, α) .

(5)
Typically, the secondary sources are assumed to be monopole
sources, e.g. [10,11]. In principle, any secondary source transfer
function that does not exhibit zeros in the spherical harmonics
domain can be handled in the presented approach [12]. In prac-
tical applications the summation in (5) can not be performed over
an infinite number of addends but is truncated at a specific value
N − 1. One speaks then of (N − 1)-th order reproduction.

Note that above discussed approach corresponds to what
is referred to asnear-field compensated higher order Ambison-
ics [4]. A formulation of this approach employing circular dis-
tributions of secondary sources with a three-dimensional spatio-
temporal transfer function - so-called2.5-dimensional reproduc-
tion - can be found in [6].

3. EXTENSION OF THE AMBISONICS APPROACH TO
PLANAR SECONDARY SOURCE DISTRIBUTIONS

Further analysis of the Ambisonics approach as presented in
Sec. 2 shows that it essentially constitutes thesingle-layer po-
tentialsolution to sound field synthesis employing spherical dis-
tributions of secondary sources [5]. Eq. (1) can be understood
as a compact Fredholm operator of zero index [7, 11, 13]. The
general solution is obtained by expanding the operator and the
virtual sound field into a series of orthogonal basis functions and
performing a comparison of coefficients (i.e.mode-matching).
For the spherical secondary source distribution treated in Sec. 2,
these orthogonal basis functions are given by the spherical har-
monicsY m

n (β, α) and the convolution theorem (2) constitutes a
mode-matching operation.

The Fredholm operator theory does not require the sec-
ondary source distribution to be spherical [13, 14]. Any contour
simply enclosing the receiver volume is possible. Although the
solutions to such more complicated contours are mathematically
well understood, the required basis functions are only available
for simple geometries like prolate spheroids and similar.

In order to find the solution to the reproduction equation for
planar contours (i.e. in order to find the Ambisonics solution),
we assume a boundary which consists of a discΩ0 and a hemi-
sphereΩhemi of radiusrhemi as depicted in Fig. 1 [9]. As we
let rhemi → ∞, the discΩ0 becomes an infinite plane and the
volume under consideration becomes a half-space. We term the
latter target half-space. We additionally invoke the Sommerfeld
radiation condition [9] in order to assure that no contributions to
the desired sound field originate from infinity (where the hemi-
spherical boundary is).

Ωi

Ω0

Ωhemi

rhemi

Figure 1: Illustration of a boundary consisting of a discΩ0 and
a hemisphereΩhemi.

For convenience, we assume the boundary of our target half-
space (i.e. the secondary source distribution) to be located in the
x-z-plane, and we assume the target half-space to include the
positivey-axis. Refer to Fig. 2. The sound fieldS(x, ω) syn-
thesized by the infinite uniform planar secondary source distri-
bution is then given by [15,16]

S(x, ω) =

∞∫∫

−∞

D(x0, ω) ·G(x− x0, ω) dx0dz0 , (6)

wherex0 = [x0 0 z0]
T denotes the position of a secondary

source. In order that (6) holdsG(x − x0, ω) has to be invari-
ant with respect to translation along the planar secondary source
contour. Integrals like (6) are termedFredholm integrals[14].
Note the resemblance of (6) to the Rayleigh integrals [9].

x

y

z

← y = 0

Figure 2: Illustration of the setup of a planar secondary source
distribution located along thex-z-plane. The secondary source
distribution is indicated by the gray shading and has infinite ex-
tent. The target half-space is the half-space bounded by the sec-
ondary source distribution and containing the positivey-axis.

As with spherical secondary source contours, (6) can inter-
preted as a convolution along the secondary source contour. In
this case it is a two-dimensional convolution along the spatial di-
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mensionsx andz respectively. The according convolution theo-
rem is given by

S̃(kx, y, kz, ω) = D̃(kx, kz, ω) · G̃(kx, y, kz, ω) , (7)

which relates the involved quantities in wavenumber do-
main [17].

The secondary source driving function is given in wavenum-
ber domain by

D̃(kx, kz, ω) =
S̃(kx, y, kz, ω)

G̃(kx, y, kz, ω)
, (8)

and in temporal spectrum domain by [15,16]

D(x, z, ω) =
1

4π2

∞∫∫

−∞

S̃(kx, y, kz, ω)

G̃(kx, y, kz, ω)
e
−jkxx

e
−jkzz

dkxdkz .

(9)
In order that D̃(kx, kz, ω) and D(x, z, ω) are defined,
G̃(kx, y, kz, ω) may not exhibit zeros. If the latter requirement
is not fulfilled in practical situations, regularization can be ap-
plied in order to ensure a good behavior of the inverse ofG̃(·).
In the presented approach, the regularization can be applied on
individual spatial frequencieskx andky respectively which re-
sults generally in a more gentle regularization than regularizing
the entire inverse problem like in [18].

From (8) and (9) it is obvious that the driving signal is es-
sentially yielded by a division in spatial frequency domain. We
therefore refer to the presented approach asspectral division
method(SDM).

Equation (9) suggests thatD(x, z, ω) is dependent on the
distancey of the receiver to the secondary source distribution
sincey is apparent on the right hand side of (9). It can be shown
that under certain circumstances,y does indeed cancel out mak-
ingD(x, z, ω) independent from the location of the receiver. Re-
fer to [16] for a further treatment.

4. EXTENSION OF THE AMBISONICS APPROACH TO
LINEAR SECONDARY SOURCE DISTRIBUTIONS

A planar secondary source contours like the one treated in Sec. 3
will be rarely implemented in practice due to the enormous
amount of loudspeakers necessary. Typically, audio reproduc-
tion systems employ linear arrays or a combination thereof and
aim at reproduction in the horizontal plane. For convenience, a
linear secondary source distribution is assumed which is located
along thex-axis (thusx0 = [x0 0 0]T ) in the following. Refer
to Fig. 3.

For this setup the reproduction equation is given by [15,16]

S(x, ω) =

∞∫

−∞

D(x0, ω) ·G(x− x0, ω) dx0 . (10)

Equation (10) can be interpreted as a convolution along thex-
axis and the convolution theorem

S̃(kx, y, z, ω) = D̃(kx, ω) · G̃(kx, y, z, ω) (11)

holds [17]. The secondary source driving functionD̃(kx, ω) in

x

y

z

↖
y = yref

Figure 3: Illustration of the setup of a linear secondary source
situated along thex-axis. The secondary source distribution is
indicated by the grey shading and has infinite extent. The tar-
get half-plane is the half-plane bounded by the secondary source
distribution and containing the positivey-axis. The thin dotted
line indicates the reference line (see text).

wavenumber domain is thus given by

D̃(kx, ω) =
S̃(kx, y, z, ω)

G̃(kx, y, z, ω)
. (12)

In the above derivation, we intentionally assumedD(x, ω) to
be exclusively dependent onx becausex is the only degree of
freedom in the position of the secondary sources. However, gen-
erallyD(x, ω) will be dependent on the position of the receiver.
This is mathematically reflected by the fact thaty andz do not
cancel out in (12) [16].

It is not surprising that we are not able to reproduce arbitrary
sound fields over an extended area since we are dealing with
a secondary source distribution which is neither infinite in two
dimensions nor does it enclose the target volume [9].

In the present case, the secondary source setup will only be
capable of creating wave fronts that propagate away from it. We
will treat this circumstance in an intuitive way in the following.
Refer to [16] for a rigorous derivation.

The propagation direction of the reproduced sound field can
generally only be correct inside one half-plane bounded by the
secondary source distribution. We term this half-planetarget
half-plane. The reproduced sound field anywhere else in space
is a byproduct whose properties are determined by the secondary
source driving functionD(x, ω) and the radiation characteristics
of the secondary sources in the respective direction. For conve-
nience, we aim at reproducing a given desired sound field inside
that half of the horizontal plane which contains the positivey-
axis. We therefore setz = 0.

However, above considerations do not affect the dependence
of the driving function ony. In other words, even inside the tar-
get half-plane the reproduced sound field will generally only be
correct on a line parallel to thex-axis at distancey = yref [16].
At locations off this reference line, the reproduced sound field
generally deviates from the desired sound field in terms of am-
plitude, propagation direction, and near-field components [16].

The present situation, i.e. the employment of secondary
sources with a three-dimensional spatio-temporal transfer func-
tion for two-dimensional reproduction and all resulting proper-
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ties of the reproduced sound field are termed 2.5-dimensional re-
production, e.g. [2]. This 2.5-dimensional reproduction exhibits
special properties as discussed below.

In order to simplify the mathematical treatment, we restrict
the validity of equations (10)–(12) to our reference line in the
target half-plane, i.e.z = 0 andy = yref.

Equation (12) is then given by

D̃(kx, ω) =
S̃(kx, yref, 0, ω)

G̃(kx, yref, 0, ω)
. (13)

Performing an inverse Fourier transform with respect tokx

on (13) yields the driving functionD(x, ω) in temporal spec-
trum domain as

D(x, ω) =
1

2π

∞∫

−∞

S̃(kx, yref, 0, ω)

G̃(kx, yref, 0, ω)
e
−jkxx

dkx . (14)

In order thatD(x, ω) is defined,G̃(kx, yref, 0, ω) may not ex-
hibit zeros. As with planar contours, regularization can be ap-
plied in practice in order to ensure a good behavior of the in-
verse ofG̃(kx, yref, 0, ω). Refer to [19] for considerations on the
incorporation of secondary source directivity.

For purposes of illustration of the basic properties of the pre-
sented approach, we treat the scenario of a monochromatic vir-
tual plane wave of frequencyωpw which propagates along thex-
y-plane in directionθpw synthesized by a continuous linear dis-
tribution of secondary monopoles. When secondary monopoles
are assumed, the inverse ofG̃(kx, yref, 0, ω) is well defined and
no regularization is required.

Considering above described referencing, the secondary
source driving function can be shown to be [16]

D̃pw(kx, ω) =
4j · e−jkpw,yyref

H
(2)
0 (kpw,yyref)

· 2πδ(kx − kpw,x)×

× 2πδ(ω − ωpw) , (15)

and

Dpw(x, ω) =
4j · e−jkpw,yyref

H
(2)
0 (kpw,yyref)

· e−jkpw,xx2πδ(ω − ωpw) (16)

respectively, withkpw,x = kpw cos θpw andkpw,y = kpw sin θpw.
Transferred to the time domain and formulated for broad-

band signals, (16) reads

dpw(x, t) =

f(t) ∗t ŝ

(

t−
x

c
cos θpw sin φpw −

yref

c
sin θpw sin φpw

)

.

(17)

f(t) denotes a filter with frequency response

F (ω) =
4j

H
(2)
0 (kpw,yyref)

,

the asterisk∗t denotes convolution with respect to time, andŝ(t)
the time domain signal that the plane wave carries. Thus, the
time domain driving signal for a secondary source at a given
location is yielded by applying a delay and a filter on the time
domain input signal. The transfer functionF (ω) of the filter has

 

 

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

−5

0

5

x→ [m]

y
→

[m
]

(a) <{Spw(x, ω)}

 

 

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

−5

0

5

10

x→ [m]

y
→

[m
]

[dB]

(b) 20 · log10 |Spw(x, ω)|

Figure 4: Sound pressureSpw(x, ω) of a continuous linear dis-
tribution of secondary point sources synthesizing a virtual plane
wave offpw = 1000 Hz and unit amplitude with propagation
direction θpw = π

4
referenced to the distanceyref = 1.0 m.

The secondary source distribution is indicated by the dotted line.
Only the horizontal plane is shown. The values are clipped as
indicated by the colorbars.

high pass characteristics with a slope of approximately 3 dB per
octave.

F (ω) is exclusively dependent on the propagation direction
of the desired plane wave and on the amplitude reference dis-
tanceyref. It is therefore equal for all secondary sources and it is
sufficient to perform the filtering only once on the input signal
before distributing the signal to the secondary sources. The de-
lay is dependent both on the propagation direction of the desired
plane wave and on the position of the secondary source. It there-
fore has to be performed individually for each secondary source.
Note the strong resemblance of this implementation scheme to
the implementation of WFS [2,16].

Fig. 4 depicts simulations of above treated scenario of a vir-
tual plane with propagation directionθpw = π

4
. It can be seen

from Fig. 4(a) that the wave fronts are indeed plane. As evident
from Fig. 4(b), the synthesized sound field though exhibits an
amplitude decay of approximately 3dB for each doubling of the
distance to the secondary source distribution. This circumstance
is characteristic for 2.5-dimensional reproduction [6].
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5. COMPARISON TO WAVE FIELD SYNTHESIS

WFS [1] constitutes the best-known analytical sound field
synthesis approach besides Ambisonics. WFS is based on
Rayleigh’s first integral formula which enables the calculation
of the loudspeaker driving signals from the directional gradi-
ent of the sound field to be reproduced. In its initial formula-
tion, it assumes that the secondary source distribution is planar
in the three-dimensional case and linear in the 2.5-dimensional
case which allows a direct comparison to the approach presented
in Sec. 3 and 4. Due to the practical relevance we restrict further
considerations to linear secondary source distributions.

The close relationship of the presented approach and WFS
has already been indicated at the end of Sec. 4. Although the
presented approach exhibits similar properties to WFS in prac-
tice, the fundamental benefit is the fact that the former provides
an exact solution on the reference line. 2.5-dimensional WFS
on the other hand, constitutes an approximation even on the ref-
erence line [20]. The essential benefit of WFS however is the
circumstance that the driving signals can be comfortably calcu-
lated via the directional gradient of the virtual sound field which
is feasible even for complicated virtual sound fields like mov-
ing sources and alike [21] where the SDM-solution has not been
found.

The spectral division method has been primarily employed
so far as a theoretical tool in order to optimize WFS reproduc-
tion. It has been shown that the theoretical superiority of SDM
may be exploited to reduce artifacts in WFS while still maintain
the practical benefits of the latter. The following enumeration
gives an overview over the achievements.

• It has been shown that 2.5-dimensional WFS suffers from
systematic amplitude errors additional to those amplitude
errors due to the 2.5-dimensionality when virtual plane
waves are reproduced [16].

• The derivation of the loudspeaker driving signals for 2.5-
dimensional WFS involves two separate stationary phase
approximations. As a consequence, the driving signals
are only correct when both the virtual source under con-
sideration as well as the receiver are sufficiently far away
from the secondary source contour. Especially when the
virtual source approaches (or even crosses) the secondary
source contour, a systematic coloration is introduced which
can be easily overcome using knowledge deduce from the
SDM [20].

• The SDM employs a formulation of the reproduction equa-
tion in spatial frequency domain, e.g. (11). This representa-
tion is very convenient since it allows for a straightforward
discrimination of the involved propagating and evanescent
sound fields. Such knowledge can be used to optimize the
reproduction of focused virtual sound sources in terms of
practicability by suppressing all evanescent components in
the synthesized sound field [22].

6. CONCLUSIONS

The spectral division method for sound field synthesis was pre-
sented. It can be interpreted as an extension of the near-field
compensated higher order Ambisonics approach to the employ-
ment of planar and linear secondary source contours. The Am-
bisonics solution which assumes spherical secondary source dis-
tributions was interpreted as the single-layer potential solution

to the underlying problem. This interpretation directly enables
the employment of arbitrarily shaped secondary sources distribu-
tions which simply enclose the volume of interest. The solution
of the problem is obtained via a formulation of the reproduction
equation in a suitable spatial frequency domain. For the spheri-
cal secondary source distributions which are typically employed,
this suitable spatial frequency domain is given by the spherical
harmonics domain.

It was shown that a planar and linear secondary source dis-
tributions may also be applied with certain limitations. In this
case, a formulation of the reproduction equation in wavenumber
domain is used. For all secondary source contours treated in this
paper, i.e. spherical, planar, and linear ones, the suitable spatial
frequency domain was found as that domain providing a con-
volution theorem for convolution along the respective secondary
source contour.

It was shown that the solution to linear secondary source
distributions is exact only on a given reference line. Examples
were given how this exact property of the presented approach can
be exploited in order to reduce artifacts in wave field synthesis,
an alternative yet approximative analytical approach which can
also handle linear and planar secondary source distributions.

The operator describing sound field synthesis using planar
and linear secondary source distributions is not compact. This
fact leads to continuous spatial frequencies. Spherical contours
on the other hand constitute a compact operator so that only dis-
crete spatial frequencies (modes) are possible.
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[10] J. Daniel, “Repŕesentation de champs acoustiques, applica-
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