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ABSTRACT

Sound sources and musical instruments are assumed to posess

an acoustic center from which sound radiates and a directivity

which describes the dependency of the sound radiation on the

direction. Consequently, it should be possible to assign a center

and an orientation to a source by the sound it radiates. Surround-

ing spherical microphone arrays have been built to identify the

entire sound-radiation of a source simultaneously at many direc-

tions. However, there are no established algorithms for extract-

ing the acoustic center and orientation of sound sources from the

spherical microphone arrays data. This paper considers suitable

acoustic center and orientation analysis algorithms and shows

some practical case studies.

1. INTRODUCTION

It is possible to obtain a complete image of all the sound radiated

from a musical instrument by taking recordings with a spherical

microphone-array surrounding the instrument. This image con-

tains the most important acoustic features associated with the

musical instrument. Therefore, such recordings are considered

an invaluable innovation in immersive simulation of room acous-

tics and its perception, and above all, the closer investigation

of the musical acoustics of instruments. Most interestingly, the

image obtained does not only contain the sound of the instru-

ment and its directivity pattern, but may also reveal its orienta-

tion and position, and possibly more, in principle. This contribu-

tion focuses on the analysis of sound-radiation recordings as to

identify some of these seemingly secondary features. However

clearly, the motivation for this particular goal is not pure curios-

ity, whether the localization of the acoustic center of an instru-

ment and its orientation is feasible. Much more, our motivation

is about obtaining a parametric version of sound-radiation sig-

nals that is separate from orientation and position of the musical

instrument. If this separation works successfully, a great sim-

plification of the sound-radiation signal can be expected. This

is because localization allows to revert off-centered acoustical

origins to the center of the spherical array and hereby minimize

the required angular resolution. On the other hand, orientation

tracking allows to compensate for rotational movements in the

sound-radiation data, and hereby stabilizes the analysis of the

directivity pattern. The following sections of the paper are di-

vided into three parts:

Sec. 2 discusses the mathematical and physical basics. This

includes an introduction into the base-functions of the spherical

exterior problem, i.e. radiating sound fields, the identification of
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Figure 1: Illustration of the spherical exterior problem. All

sound-sources are located within the microphone array, the

hatchure marks the homogeneous sound-field (free of obsta-

cles/boundaries/sources).

their coefficients from discrete array measurements, and a brief

introduction into translation and rotation.

Sec. 3 discusses ways of rotational matching using a com-

pact discrete set of possible rotation matrices and a correlation

measure for the array observations. Experimental results using a

trumpet are provided in this section.

Sec. 4 discusses ways of acoustic centering (or alignment,

cp. [1]) for array observations by two kinds of cost functions

that become extremal if a superior center of decomposition has

been found. The two cost functions of concern include a simple

interference-based measure and a robust centroid of the spherical

harmonic moments. Some practical results can be given.

2. SPHERICAL EXTERIOR PROBLEM

The spherical base-solution (math./phys.) are capable of fully

expanding sound fields that radiate from a radial point of origin

r = 0 with the coefficients cnm

p(kr,θ) =

∞
X

n=0

n
X

m=−n

cnmh
(2)
n (kr)

| {z }

:=ψm
n (kr)

Y mn (θ), (1)

the spherical Hankel-functions1 h
(2)
n (kr) depend-

ing on the wave-number k = ω/c, (ω = 2πf ,

1It is a matter of convention which kind h
(1)
n (kr), or h

(2)
n (kr) of

Hankel function to use. This paper uses the spherical Hankel function of
the second kind.
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c ≈ 343m/s), and the radius r, and the spherical har-

monic Y mn (θ) depending on the cartesian unit vector

θ = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T the direction

of which depending on azimuth ϕ and zenith ϑ, cf. [2, 3, 4].
As the coefficients cnm fully describe the radial and angular

propagation of the field, e.g. sound-pressure, they can be called

the wave-spectrum. The term ψmn (kr) = cnm h
(2)
n (kr) marked

in eq. (1) is called spherical wave-spectrum as defined in [2]. It

describes the sound-field, e.g. pressure, expanded into spherical

harmonics at any sphere of constant radius kr and is defined by

the transform integral

ψmn (kr) =

Z

S2

p(kr, θ)Y mn (θ)dθ. (2)

Assuming the L discrete observations of the sound-pressure by a

spherical array to be a linear combination of spherical harmonics

pL = YN ψ̂N, (3)

with YN =

0

B

B

B

@

Y 0
0 (θ1) Y −1

1 (θ1) . . . Y N
N (θ1)

Y 0
0 (θ2) Y −1

1 (θ2) . . . Y N
N (θ2)

.

..
.
..

. . .
.
..

Y 0
0 (θL) Y −1

1 (θL) . . . Y N
N (θL)

1

C

C

C

A

, (4)

an angularly band-limited version ψmn (kr) = 0 : n > N of the

spherical wave-spectrum ψN is obtained by matrix inversion

ψ̂N (kr) = Y
−1
N pL. (5)

The wave-spectrum cN is calculated from eq. (5) by a diagonal

matrixHN containing the associated radial propagation terms

cN = H
−1
N ψ̂N (kr) = H

−1
N Y

−1
N pL, (6)

HN = diagN{h
(2)
n (kr)}. (7)

2.1. Coordinate transforms:

Re-expansion into spherical base solutions

Coordinate transform of the following types

r
′ = r + (0, 0, dz)

T, coaxial translation, (8)

r
′ = Qr, rotation,QQ

T = Q
T
Q = I (9)

express what happens if the sources inside the spherical array

are displaced or being rotated. Note that arbitrary translations

by a shift d can be decomposed into rotations and translations

in dz, cf. [3]. A sound-field described by the wave-spectrum

cnm at r can be re-expanded into a wave-spectrum c′nm at r′.

Both types of coordinate transforms yield different mappings

cnm
Q, dz
−→ c′nm, cf. [3, 5, 1]

c′nm =
X

n′

cn′m Tmn′n(dz), coaxial translation, (10)

c′nm =
X

m′

cnm′ Tm
′m

n (Q), rotation. (11)

In particular, rotation does not affect the angular band-limitation

c′nm = 0 : n > N, whereas translation tends to create com-

ponents of higher orders c′nm 6= 0 : n > N. That also

means, that the assumption of a band-limited spherical wave-

spectrum ψmn (kr) in eq. (5) may not always hold for arbitrarily

shifted sources. Nevertheless, this assumption is kept to allow

for the calculation of a band-limited spherical wave-spectrum

by eq. (5), using hyperinterpolation [6, 7].

2.1.1. Band-limitation of misaligned sources

A correct representation of a source of known angular band-limit

N after a displacement by d requires the re-expansion to have

wave-spectral coefficients of a higher band-limit, i.e. N′ > N.

For the present surrounding spherical array analysis this means

off-center sound sources cause higher-order components that

technically need to be resolved by the array without spatial mis-

interpretations, i.e. aliasing [8, 7]. A rough rule-of thumb could

be given as

N′ ≥ N + kd. (12)

However, it is hard to know or estimate the band-limit N of an

unidentified source. Even more, the misalignment d of its acous-
tic center from the center of the measurement array is hard to

know or estimate in advance.

Therefore, as a working hypethesis, let us assume the cor-

rectness of the wave-spectrum cnm calculated in eq. (6).

3. ROTATIONALMATCHING

For tracking the angular orientation of the musical instrument

between two time instants t and t′, a spherical correlation mea-

sure can be optimized that compares array patterns after rotation.

As the array delivers observations at discrete locations, it is more

convenient to perform spherical correlations on the interpolated

radiation patterns. The best rotational match is achieved by max-

imizing the correlation function

c(Q) =
ψH

N T (Q) ψ′

N

‖ ψN‖‖ψ′

N‖
(13)

of the spherical wave-spectra ψN and ψ′

N. The symbol T (Q)
in the above measure expresses the rotation operator eq. (11).

The 3 × 3 rotation matrix Q are an element of the spe-

cial orthogonal matrices SO(3), i.e. QTQ = QQT = I and

det{Q} = +1. Rotation matrices have three continuous de-

grees of freedom that can be varied in order to observe c(Q),
but they do not change monotonically with these angles. In or-

der to obtain a compact but representative discrete search space

for Q, practical considerations on the discretization of the rota-

tion group SO(3) follow in the next section.

3.1. Discrete set of rotations

Every rotation can be represented by three angles, the Euler-

angles, e.g.

Q = Qz(α)Qy(β)Qz(γ), (14)

withQz(∠) =

0

@

cos(∠) sin(∠) 0
− sin(∠) cos(∠) 0

0 0 1

1

A ,

and Qy(β) =

0

@

cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

1

A .

In order to find a well-separated and uniform set of rotations

{Qq}q=1...Q, a distance measure of two rotation matrices Q1

and Q2 can be defined according to [9]

γdist = arccos
`1

2
(T r(Q1Q

T
2 ) − 1

´

. (15)
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Figure 2: Example rotational test set: three spherical radii repre-

sent rotations by γ = {0, π
2
, π}; corresponding layers are sam-

pled by an increasing number of nodes representing discrete di-

rections of rotation axes.

(b) t=0 sec (c) t=5 sec

Figure 3: Rotational tracking of the radiation patterns of a mov-

ing trumpet. The dashed line shows the tracked trace interpo-

lated between two sample blocks.

This metric could be a starting point for searching well-separated

sets with optimization.

Another, more convenient way is proposed here, that is

mostly uniform and well-separated. The rotation angles α, β, γ
can be expressed as a unit vector in R

4, i.e. as points on the

unit-hypersphere S3

q =

0

B

@

cos(γ/2)
sin(γ/2) sin(β)
sin(γ/2) cos(β) sin(α)
sin(γ/2) cos(β) cos(α)

1

C

A
. (16)

The software tool [10] from Paul Leopardi [11] allows to

find uniformly distributed nodes on S
3. Note that the southern

hyper-hemisphere is not used as corresponding rotations Q can

be expressed in the domain 0 ≤ γ ≤ 180◦. Moreover, the

hereby found discrete search space can be limited to smaller ro-

tation angles if the considered time-steps do not allow for great

movements. Fig. 2 gives an example of a discrete set of rotations

depicting the discrete points in the mapping of S3 on R
3

q
(3) =

0

@

0 1 0 0
0 0 1 0
0 0 0 1

1

A q. (17)

3.2. Case study using a trumpet

Fig. 3 shows an example of rotational tracking of a trumpet in the

IEM array [6]; its pick-up positions lie at r = 1.2m. The spher-

ical wave-spectra determined by the absolute sound-pressures

ψ̂N = Y −1
N |p| seem to be more robust for rotational tracking,

however might become ambiguous for single spherical harmon-

ics as radiation patterns. In the first time-frame shown in the

figure the instrument is assumed to be the reference direction x.
In the second time-frame, this direction has obviously changed.

4. ACOUSTIC CENTERING / POSITION TRACKING

Unlike rotational matching, acoustic centering does not require

comparison of two different spherical patterns. Despite the pro-

posed acoustic centering (or alignment [1]) method is only re-

ferring to the shifted ψ′

N and neglects possible errors in the in-

terpolation of discrete spherical patterns, it is shown to produce

convincing results for position tracking; even for regarding sin-

gle frequencies only.

4.1. Cost functions for centering

Two approaches have been examined for the static tracking of the

acoustic center. One is the complex-squared sum of the discrete

sound pressure distribution

Jssc(d) = 1 −

˛

˛

˛

˛

˛

R

p(θ)2 dθ
R

|p(θ)|2 dθ

˛

˛

˛

˛

˛

(18)

= 1 −

˛

˛

˛

˛

˛

ψ′T
N′ ψ

′

N′

‖ψ′

N′‖2

˛

˛

˛

˛

˛

,

for real-valued spherical harmonics. The shifted spherical wave-

spectrum ψ′

N′ = H T (d)H−1 ψN is found by eq. (10). The

other cost function regards the center of mass of the spherical

harmonics components

Jmc(d) =
c′
H
N′diagN′{wn}c

′

N′

c′HN′c′N′

, (19)

wherewn can be any penalizing weight increasing with the order

n, e.g. n + 1. Both cost functions can be evaluated within the

volume of the array. Fig. 4 shows an example of a simulated

omni-directional source located at the center of the array, the cost

functions are evaluated along the z-axis of the array. A global

minimum should give the estimated dislocation of the acoustic

center of the sound source. Obviously, Jmc gives a less sharp

but more reliable result. In [12] Jssc has been shown to fail with
arbitrary complex wave-spectra cnm. Therefore the subsequent

algorithm preferably uses Jmc.

4.2. Solution by optimization

Several volume sampling methods have been tested to find a

global minimum of Jmc within a certain radial bound. The re-

expansion is calculated for every sampling node. The cubic close

sphere packing method has proven to be an efficient solution

since several nodes have the same angular positions and others

share the same radius. However, the more sophisticated non-

linear optimization algorithm using the simplex-search method

outperforms these simple search methods (e.g. fminsearch in
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Figure 4: Cost functions evaluated along the z-axis for both sug-

gested criteria, the complex squared sum Jssc and the centroid

of the wave spectra Jmc. An omni-directional sound-source is

simulated at the origin of the array.

MATLAB). The non-linear optimizer is given access to evalu-

ation of the cost-function and autonomously optimizes for the

best parameter d.

Fig. 5 gives a brief estimation of the errors for the simu-

lated monopole source inside a simulated 64-channel array, i.e. a

noise-less and acoustically ideal case. The frequency after which

the algorithm fails can be predicted with eq. (12). Errors at small

shifts are probably due to numerical errors in the algorithm.
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Figure 5: Analytic simulation of the absolute errors of the

acoustic centering algorithm using Jmc with the simplex search

method. Different dislocations az are evaluated.
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Figure 6: Experimental evaluation of the acoustic centering al-

gorithm using Jmc and simplex search method. A loudspeaker

in a small enclosure has been placed at different locations.

Position a([axayaz ]cm) −dmin([dxdydz ]cm) verror (cm)

1
ˆ

0 0 0
˜ ˆ

0 0 0
˜

N.A.

2
ˆ

0 0 5
˜ ˆ

1 0 4
˜

1.41

3
ˆ

0 0 10
˜ ˆ

1 1 10
˜

1.41

4
ˆ

0 0 20
˜ ˆ

1 0 20
˜

1

5
ˆ

0 0 30
˜ ˆ

2 2 29
˜

3

6
ˆ

0 0 40
˜ ˆ

1 0 38
˜

2.23

7
ˆ

0 0 50
˜ ˆ

1 0 45
˜

5.01

8
ˆ

0 0 60
˜ ˆ

2 1 54
˜

6.4

9
ˆ

20 0 0
˜ ˆ

18 1 0
˜

2.23

10
ˆ

20 0 20
˜ ˆ

19 1 22
˜

2.45

11
ˆ

−20 0 20
˜ ˆ

−20 2 21
˜

2.23

Table 1: Positions of the loudspeaker

Table 2: Positions of the loudspeaker, the determined localiza-

tion vector criterion and the absolute error.

4.3. Case study1: Loudspeaker

To get an idea of the reliability in real-world cases, we have eval-

uated impulse responses of a loudspeaker in a small enclosure

which is assumed to have an omni-directional radiation below

a certain frequency. Measurements have been done at different

positions using the exponential sweep method, the resulting im-

pulse responses are not cut.

Fig. 6 shows the acoustic centers found by the optimization

algorithm. Tab. 2 lists the test positions a of the loudspeaker

and the optimization results dmin. The relative offsets of the test

positions are known and their absolute position is calibrated to

position no. 1. This position has been set up closest to the origin

of the array. Tab. 2 gives the absolute error of the optimization

result including positioning errors of the speaker placement.

Within a radial bound of about r = 40−50 cm the algorithm

gives excellent results. Outside this radial bound the results are

distorted by spatial aliasing.

4.4. Case study2: Bassflute

Fig. 7 shows a centering map of a bassflute recording in the

IEM array. A centering map depicts the cost functions evalu-

ated at a slice through the spherical volume that goes through
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Figure 7: Example of centering maps for a Bassflute recording.

The spherical volume is sliced at the optimization result of the

Jmc criterion. Both maps show the x-z-plane of the volume.

the detected acoustic center. The two effective points of radia-

tion of the bassflute are represented as local centers revealed by

the complex squared-sum criterion whereas the mass centroid

criterion stays convex through the whole array volume and can

therefore be used to determine a global minimum using the non-

linear optimizer.

5. CONCLUSIONS

This paper considers sound-radiation analysis with spherical ar-

rays in order to determine the orientation and acoustic center of

a sound source at a given frequency.

We presented an efficient algorithm for orientation track-

ing with rotational matching by spherical correlation on a suit-

able rotational search-space. We also gave two cost functions

for detecting the acoustic center of a sound source by using the

“multipole”-translation operators. For the latter algorithm, non-

linear optimization has been found superior to a discrete search

x

y

z

−x

Figure 8: Orientation of the Bassflute in the IEM array [6].

space as one of the proposed cost functions is nearly convex for

most scenarios.

Both algorithms have been applied to real-world data cap-

tured by the IEM spherical microphone array and seem to work

convincingly. Nevertheless there are errors and limitations that

have been simulated briefly.

A comprehensive study on the constellation of acoustic cen-

ters of musical instruments is subject to future research, and the

errors and limits should be examined more closely.
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Proc. of the 2nd International Symposium on Ambisonics and Spherical Acoustics May 6-7, 2010, Paris, France

[7] F. Zotter, “Sampling strategies for acoustic holography/

holophony on the sphere,” in NAG-DAGA, Rotterdam,

2009.

[8] B. Rafaely, B. Weiss, and E. Bachmat, “Spatial aliasing in

spherical microphone arrays,” IEEE Transactions on Sig-

nal Processing, vol. 55, March 2007.

[9] J. C. Mitchell, “Discrete uniform sampling of rotation

groups using orthogonal images,” Departments of Math-

ematics and Biochemistry, 2007.

[10] P. Leopardi. (2010) Equal area partitioning toolbox for

MATLAB. [Online]. Available: http://eqsp.sourceforge.

net/

[11] ——, “Distributing points on the sphere: Partitions, sepa-

ration, quadrature and energy,” Ph.D. dissertation, School

of Mathematics and Statistics, Departement of Applied

Mathematics, University of New South Wales, November

2006.

[12] D. Deboy, “Acoustic centering and rotational tracking in

surrounding spherical microphone arrays,” 2010.


