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ABSTRACT

The sound field reproduction problem is formulated as an inverse
problem, in which the reproduction of a target sound field is at-
tempted, in the interior of a given control region, with an array
of loudspeakers (referred to as a secondary source distribution).
The determination of the loudspeaker gains represents an ill-
posed problem. This paper studies under what circumstances the
said inverse problem allows for a unique solution.The general so-
lution of the problem is derived, and it is shown that nonunique-
ness arises when the wave number is one of the Dirichlet eigen-
values of the control region. It is shown that, when this is not the
case, the solution of the problem is unique. Numerical simula-
tions illustrate the effect of nonuniqueness of the solution for the
case of spherical secondary source distribution and control re-
gion. The case is also studied of the wave number being one of
the Dirichlet eigenvalues of the region bounded by the secondary
source distribution.

1. INTRODUCTION

The reproduction of a desired sound field using an array of loud-
speakers is a problem that has received much attention during the
last decade. This can be can be mathematically modeled as an
inverse problem, involving a suitable model of the loudspeaker
array under consideration and a control region, in which the re-
production of the desired field is attempted. This control region
is hereafter identified by the symbol V and, in the case of an in-
terior problem, is contained within the region Λ on the boundary
of which the loudspeakers are arranged. In some situations, the
two regions Λ and V coincide. In this paper, they are assumed
to be two concentric spheres, with radii RΛ > RV .

The study of sound field reproduction as an inverse problem
is discussed in the scientific literature and several reproduction
techniques have been proposed, such as those described in refer-
ences [2], [3], [4], [5] and [6], among others. In most cases, the
data associated with the problem are a set of measurements of
the target field in the control region, or on its boundary. The de-
termination of the required loudspeaker signals from these data
is, in general, an ill-posed problem. This implies that the solu-
tion might not exist, might not be unique and does in general not
depend continuously on the data (instability). In this paper, the
problem of nonuniqueness of the solution is addressed.

Portions of the results presented here are also reported in reference
[1].

This work has been partially funded by the Royal Academy of Engi-
neering and by the Engineering and Physical Sciences Research Council.

We assume that the loudspeaker array can be modeled by a
continuous distribution of monopole-like secondary sources on
the boundary of Λ, and the reproduced field can be therefore
mathematically represented by a single layer potential, as ex-
plained below. We assume that at least one solution of the prob-
lem exists, and we derive an expression for one of the possible
solutions.

The Dirichlet problem is discussed, whose uniqueness al-
lows for the sound field control effort to be limited to the bound-
ary of V , rather than to the whole control region, when the op-
erating wave number is not one of the so-called Dirichlet eigen-
values kn. Otherwise, the solutions of the Dirichlet problem and
also of the sound field reproduction problem, as it is formulated
here, are not unique.

The proof is provided that the problem under consideration
is uniquely solvable when k 6= kn and, for the case of spherical
geometry, it is demonstrated that the opposite is true when k
is one of the Dirichlet eigenvalues. It is emphasized that the
uniqueness or nonuniqueness of the problem under consideration
are determined only by the relation between the wave number k
and the geometry of the control region V .

The nonuniqueness problem associated to the Dirichlet
eigenvalues (or Neumann eigenvalues for similar problems) is
well known and is discussed in the literature dedicated to acous-
tic radiation problems, boundary element methods and acoustic
holography [7],[8], but it has received scarce attention in the lit-
erature on sound field reproduction.

In the final part of this paper, the role is studied of the Dirich-
let eigenvalues of the region Λ, whose boundary ∂Λ correspond
to the layer of secondary sources. It is shown that if k coincides
with one of these eigenvalues, part of the acoustic energy gener-
ated by the loudspeakers is confined to the interior of Λ and does
not propagate to its exterior.

2. NOTATION

In what follows, lowercase bold lettering represents vectors.
Each vector x is characterized by a magnitude x and by a unitary
vector x̂, identifying the direction of x. It holds that

x = x x̂ (1)

The relation between Cartesian and polar co-ordinates defining
the position vector x is

x = [x1, x2, x3] = [x cos φx sin θx, x sin φx sin θx, x cos θx]
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Given the two sets Λ and V , with boundaries ∂Λ and ∂V ,
respectively, unless differently specified a point on Λ is identi-
fied by the vector y, a point on ∂V by the vector x while any
other location in R3 is identified by the vector z.

Given an operator S acting between two spaces X and Y ,
its nullspace N(S) is given by the set of all functions aN ∈ Y
such that SaN = 0.

The notation jν(·) indicates a spherical Bessel function of
order ν, while hν(·) indicates a spherical Hankel functions of the
first kind and order ν. The notation Y ν

µ (·) represent a spherical
harmonics as defined in, for example, reference [8, p.186].

Given a square integrable function f(φ, θ), defined over the
unitary sphere, the scalar product 〈Y µ

ν |f〉 is given by

〈Y µ
ν |f〉 :=

Z 2π

0

dφ

Z π

0

f(φ, θ)Y µ
ν (φ, θ)∗ sin θdθ (2)

where the symbol Y µ
ν (φ, θ)∗ indicates the complex conjugate of

Y µ
ν (φ, θ).

The norm of f is given by

||f || :=
„Z 2π

0

dφ

Z π

0

|f(φ, θ)|2 sin θdθ

« 1
2

(3)

Given a differentiable function f(x), the normal derivative
∇nf(x) is defined for the spherical geometry considered in this
paper by

∇nf(x) :=
∂f(x)

∂x
(4)

that is the radial derivative of the function.

3. FORMULATION AND SOLUTION OF THE
PROBLEM

We assume that a continuous distribution of omnidirectional sec-
ondary sources is arranged on the boundary ∂Λ of a sphere of ra-
dius RΛ. The sound field generated by these secondary sources
is given by the single layer potential

p̂(z) =

Z

∂Λ

G(z,y)a(y)dS(y) (5)

=

Z 2π

0

dφ

Z π

0

G(rz, θz, φz, ry, θy, φy)a(θy, φy)RΛ sin θdθ

x ∈ R3

where G(z,y) is the free field Green function and a(y) is the
source strength density function. A control region V is given,
corresponding to a sphere with radius RV < RΛ and boundaries
∂V . We will refer to the restriction of the single layer potential
above to ∂V as the integral operator S. Therefore it holds that

p̂(x) = (Sa)(x), x ∈ ∂V (6)

The aim is to reproduce, in the interior of the control region, a
target sound field p(z) that satisfies the homogeneous Helmholtz
equation

∇2p(z) + k2p(z) = 0, z ∈ Λ (7)

The wave number k = ω/c, where ω is the frequency of the
sound to be reproduced and c is the speed of sound, assumed to
be uniform in R3.

In order to compute the source strength density function
a(y), an inverse problem should be solved. We need to prove if
the sound field in the interior of V can be reproduced by limiting
the field control effort only on the boundary ∂V of the control
region V . In order to do this, we need to introduce the so-called
Dirichlet problem.

3.1. The Dirichlet problem

Given the continuous function f(x) defined on ∂V , we seek the
solution of the Dirichlet problem

∇2p(z) + k2p(z) = 0, z ∈ V
p(x) = f(x), x ∈ ∂V

(8)

where the second equation represents the Dirichlet boundary
condition. This is a well known mathematical problem and in
references [9] and [10] is shown that it has a unique solution,
apart from the case when k is one of the so-called Dirichlet
eigenvalues. These are defined as the set of wave numbers kn

such that the problem (8) with homogenous Dirichlet bound-
ary condition f(x) = 0 admits at least one non-trivial solution
pn(z). In physical terms, the problem (8) corresponds to the
modal decomposition of the sound field in a cavity with the ge-
ometrical shape of V and pressure release boundary conditions
(p(x) = 0, x ∈ ∂V ), and the set of wave numbers kn cor-
respond to the infinite number of resonance frequencies of that
cavity. In the case of V being a sphere of radius RV , it turns out
that the set of the Dirichlet eigenvalues kn are given by those
numbers for which jn(knRV ) = 0.

In the case of k being one of the Dirichlet eigenvalues, the
solution of (8) is not unique. This can be easily proven: assume
that k = kn and pn(z) is the corresponding eigenfunction (the
eigenvalue is assumed to be non degenerate). Given a solution
p(z) of (8), the function p̃(z) = p(z) + αpn(z), for any α ∈ C,
is also a solution. In other words, adding to the solution p(z) the
eigenfunction pn(z), multiplied by an arbitrary complex factor
α, results again in a solution of equation (8).

In this case only the Dirichlet boundary condition is not
sufficient for solving (8), but it is necessary to impose bound-
ary conditions both on the field and on its gradient (a Cauchy
boundary condition). We will see that this nonuniqueness prob-
lem of the interior Dirichlet problem has some consequences for
the uniqueness of the sound field reproduction problem.

Under the condition that k 6= kn, the arguments above prove
that the sound field p(z) in V is uniquely defined by its value on
∂V , and this also implies that if the target sound field is repro-
duced exactly on ∂V , then it is reproduced exactly also in V .

Using arguments related to the analytical continuation of
p̂(z), it can be shown that the condition p̂(x) = p(x) on ∂V
implies that the field is accurately reconstructed also in the re-
gion of the space belonging to the interior of Λ and to the exte-
rior of V (namely in Λ\V ), provided that p(z) still satisfies the
homogeneous Helmholtz equation in that region.

3.2. Solution of the problem

It can be shown (see, for example, reference [5]) that if a solu-
tion exists this is given by the solution of the following integral
equation

p(x) = (Sa)(x), x ∈ ∂V (9)

The latter is an integral equation of the first kind, which is well
known to represent an ill-posed problem [10]. This implies that
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its solution might not exist, be unstable or might not be unique.
In what follows, we will assume that at least one solution ex-
ists, and we study whether only one solution exist or multiple
solutions are possible.

Before studying the uniqueness of the problem, we will de-
rive the expression for the solution a(y) (assuming, again, that
the latter exists). A more detail discussion about the following
derivation can be found, for example, in references [5], [11] or
[12]. We will start by expressing the free field Green function by
means of spherical harmonics. This is given by [8]

G(x,y) =

∞X
ν=0

νX
µ=−ν

ikjν(kx)hν(ky)Y ν
µ (x̂)Y µ

ν (ŷ)∗

x < y (10)

Introducing this formula into equation (9), multiplying both
sides of the equation by Y µ

ν (x̂)∗, integrating over ∂V and using
of the orthogonality relation of the spherical harmonics (see for
example [8, p.191], we obtain

〈Y µ
ν |p〉 = ikjν(kRV )hν(kRΛ)RΛ〈Y µ

ν |a〉 (11)

Multiplying both sides of this equation by Y µ
ν (ŷ) and applying

the completeness relation of the spherical harmonics (see, for
example [8, p.191]), we obtain

a(y) =

∞X
ν=0

νX
µ=−ν

〈Y µ
ν |p〉

ikRΛjν(kRV )hν(kRΛ)
Y µ

ν (ŷ) (12)

If any ν = n exists such that jn(kx) = 0, then the correspond-
ing factors should be excluded from the series above, since

ikjν(kRV )hν(kRΛ)RΛ〈Y µ
ν |a〉 = 0 (13)

independently of a(y).
In the case of a target sound field due to a single omnidirec-

tional virtual source at q /∈ Λ, the solution is given by combining
equations (12) and (10), yielding

a(y) =

∞X
ν=0

νX
µ=−ν

hν(kq)

RΛhν(kRΛ)
Y µ

ν (q̂)∗Y µ
ν (ŷ) (14)

4. UNIQUENESS OF THE SOLUTION AND
DIRICHLET EIGENVALUES

It is shown that the solution of the inverse problem, assuming it
exists, is unique if the wave number k is not one of the Dirichlet
eigenvalues kn. On the contrary, if k = kn, the solution of the
integral equation is not unique.

The proof of the uniqueness of the solution of (9) is equiv-
alent to the proof of the injectivity of S (see [13] for the defini-
tion of injectivity), that is for any two functions a(y), a′(y) ∈
L2(∂Λ) with ||a−a′|| = 0 (they are equal in L2 sense), we have
that Sa 6= Sa′ [13, p.614]. This is in turn equivalent to the proof
that the nullspace of S is trivial, that is (Sa)(x) = 0 → a(y) =
0. This second equivalence can be simply justified as follows:
since S is a linear operator, if its nullspace is non-trivial, that is
to say if the non-trivial function a0(y) ∈ L2(∂Λ) exists such
that (Sa0)(x) = 0, then for any function a(y) ∈ L2(∂Λ) it
holds that Sa = S(a + a0), hence S is not injective. Similarly,
if S is not injective then two functions a′, a ∈ L2(∂Λ) exist,
with ||a − a′|| 6= 0, such that (Sa)(x) = (Sa′)(x). Conse-
quently,

`
S(a− a′)

´
(x) = 0, which implies that the non-trivial

function (a−a′)(y) belongs to the nullspace of S (therefore the
nullspace of S is non-trivial).

The proof of the uniqueness of the solution is provided by
this theorem [1]

THEOREM 4.1. Given p(x), satisfying equation (7), if the wave
number k is not one of the Dirichlet eigenvalues for V , then the
solution a(y) of the inverse problem Sa = p is unique.

Proof of uniqueness theorem

Let the function a(y) belong to the nullspace of S. Then
(Sa)(x) = 0, ∀x ∈ ∂V and the function

u−(z) := (Sa)(z), z ∈ V (15)

is a solution of the homogeneous interior Dirichlet problem for
V . If the wave number k is not one of the Dirichlet eigenvalues
for V , then the only solution of the homogeneous interior Dirich-
let problem is u−(z) = 0, ∀z ∈ V . This implies that, given a
subset W ⊂ V , all derivatives of u(z), z ∈ ∂W are zero.
Hence, for analytical continuation, (Sa)(z) = 0, ∀z ∈ Λ. The
continuity of the single layer potential S implies that (Sa)(z) =
0, ∀z ∈ ∂Λ. As a consequence of the uniqueness of the exterior
Dirichlet problem [9], we have that (Sa)(z) = 0, ∀z ∈ Rm.
This leads to

lim
h→0

n̂(z) · ∇(Sa)(z + hn̂(z)) = 0, z ∈ ∂Λ (16)

for both h > 0 and h < 0. The jump relation of the single layer
potential is given by [10, p.54]

a(y) =
∂

∂x+

»Z

∂Λ

G(x,y)a(y)dS(y)

–
(17)

− ∂

∂x−

»Z

∂Λ

G(x,y)a(y)dS(y)

–

Using this relation, we have that a(y) = 0, ∀y ∈ ∂Λ. This
proves that, under the conditions mentioned above, S is injec-
tive.

The theorem above also implies that if k is one of the Dirich-
let eigenvalues for V , then the solution a(y) is in general not
unique. In fact, given the solution (12) in terms of a series of
spherical harmonics, any solution of the form a(y) + a0(y),
where a0 ∈ N(S), is also a solution. This case corresponds to
the second type of ill-posedness (nonuniqueness) of the integral
equation of the first kind (9).

Recalling the discussion presented in Section 3.1, if k =
kn the Dirichlet problem (8) is not uniquely solvable and the
knowledge of the pressure profile p(x), x ∈ ∂V alone is not
enough to determine the field in the interior of V . This suggests
that even if the solution of the integral equation (9) is not unique,
only one of these solutions is such that the equation

Z

∂Λ

G(z,y)a(y)dS(y) = p(z), z ∈ V (18)

is satisfied. In other words, even if the integral equation (9) (note
that is different from the formula above) has an infinite number
of exact solutions, only one of these solutions allows for the ex-
act reproduction of the target field in the interior (and possibly
in the exterior) of the control region V .
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Figure 1: Horizontal cross-section of the field generated by an
omnidirectional point source (red dot) located at [rq, θq, φq] =
[2.5 m, 80◦, 140◦]. The sphere represents the control boundary
∂V . The wave number is k = 4 rad/m and the radius of the
sphere is RV = 0.7854 m.

Figure 2: Horizontal cross-section of the field (SY 0
0 )(z). The

two spheres represent the control boundary ∂V (smaller sphere)
and the secondary source layer ∂Λ. The wave number is k =
4 rad/m and the radii of the spheres are RV = 0.7854 m and
RΛ = 1.5 m, respectively.

Figure 3: Horizontal cross-section of the reproduced field for a
virtual source located at [rq, θq, φq] = [2.5 m, 80◦, 140◦]. The
density a(y) was computed with series (12), without the terms
with ν = 0. The two spheres represent the control boundary
∂V (smaller sphere) and the secondary source layer ∂Λ. The
wave number is k = 4 rad/m and the radii of the spheres are
RV = 0.7854 m and RΛ = 1.5 m, respectively.

Figure 4: Horizontal cross-section of normalized reproduction
error (%) for a virtual source (red dot) located at [rq, θq, φq] =
[2.5 m, 80◦, 140◦]. The two spheres represent the control
boundary ∂V (smaller sphere) and the secondary source layer
∂Λ. The wave number is k = 4 rad/m and the radii of the
spheres are RV = 0.7854 m and RΛ = 1.5 m, respectively.
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4.1. Spherical geometry

We assume now that the wave number k is one of the Dirichlet
eigenvalues kn. Equation (12) represents in this case one of the
exact solutions to the integral equation (9), but all solutions of
the form

a(y) =

∞X
ν=0
n6=ν

νX
µ=−ν

Y µ
ν (ŷ)

ikR2
V R2

Λh
(1)
ν (kRΛ)jν(kRV )

〈Y µ
ν |p〉∂V

+

nX
m=−n

αmY m
n (ŷ), αm ∈ C (19)

are also correct solutions. Note that the last sum in this expres-
sion represents an element in the nullspace of S.

For a single virtual source located at q /∈ Λ, the exact solu-
tion is given by equation (14), while the application of formula
(12) to measured data does not give in this case the correct source
strength for the reproduction of the target field in the interior of
V , but only on its boundary. It can be actually seen that (12)
does not allow for the computation of the term

hn(knq)

R2
Λhn(knRΛ)

Y µ
ν (q̂)∗Y µ

ν (ŷ) (20)

of the series (14) for the given n that identifies the Dirichlet
eigenvalue kn.

It is important to emphasize that this nonuniqueness problem
occurs only when there is an unlucky combination of the radius
RV and the wave number k. Assuming that the operating fre-
quency is given, only the size of the control region V determines
the existence of this problem.

As an example, we assume that the target field, generated
by a monopole source in q, is measured on the sphere ∂V with
radius RV such that j0(kRV ) = 0 (k = 4 rad/m, RV =
0.7854 m). This arrangement is illustrated in Figure 1. The
pressure profile is given by the series (10). We observe that the
first term of the series, ν = 0, equals zero: this implies that the
function Y 0

0 (y), y ∈ ∂Λ is in the nullspace of S. Figure 2
shows the field (amplified by a factor 4 for better visualization)
given only by the term ν = 0 of series (14), that is

p0(z) = ikh0(kq)j0(kz)Y 0
0 (x̂)Y 0

0 (q̂)∗

z ∈ R3, z < q (21)

It can be noted that ∂V corresponds to a nodal surface of the
field, namely p0(x) = 0, x ∈ ∂V . Nevertheless p0(z) 6= 0 in
most of the other locations in Λ. A solution a(y) is computed
from equation 12 (truncated to the order N = 7). Clearly, the
series does not include the first term. The orthogonal projections
〈pn|p〉∂V have been computed via numerical integration on the
sphere V . The field (Sa)(z) and the normalized reproduction
error are shown in figures 3 and 4, respectively. The normalized
reproduction error, between the target field p(z) and the repro-
duced field p̂(z), is defined by

εN (z) =
|p̂(z)− p(z)|2

|p(z)|2 (22)

Not surprisingly, the error approaches zero in the vicinity of ∂V ,
but it is large in the rest of Λ.

5. DIRICHLET EIGENVALUES OF Λ

It is interesting to note that the Dirichlet (and Neumann) eigen-
values k

′
n for the reproduction region Λ do not play any role

with respect to the uniqueness of the inverse problem under con-
sideration. It is useful however to notice that the reproduced
sound field has the following interesting peculiarity when the
wave number is one of the Dirichlet eigenvalues for Λ [1]. Let
DΛ be the linear space of the normal derivatives of the solution
of the homogeneous Dirichlet problem for Λ, restricted to ∂Λ.
DΛ is defined

DΛ := {∇nu(y)|∂Λ : ∇2u(z) + k2u(z) = 0, (23)
z ∈ Λ, u(y) = 0, y ∈ ∂Λ}

If the secondary sources are driven by a strength function aD(y),
which is an element of the set DΛ, then we have that

(SaD)(z) = 0, z ∈ Rm\Λ, aD(y) ∈ DΛ (24)

This means that the acoustic field generated by San vanishes in
the exterior of Λ.

Figure 5: Sound field generated by a continuous distribution of
sources on the sphere ∂Λ. The secondary source strength a(y)

is given by the function Y −3
5 (y)/RΛ, and j5(k

′
nRΛ) = 0 (k

′
n

is one of the Dirichlet eigenvalues of Λ).

For a general geometry, this can be shown using the same
arguments used with respect to the uniqueness of the exterior
Dirichlet problem [9]. For a spherical geometry, this is simply
proven as follows. We assume that k = k

′
n , one of the Dirichlet

eigenvalue for Λ. This implies that jn(kRΛ) = 0. If we assume
that the source strength function is given by

a(y) =

nX
µ=n

αµY µ
n (ŷ) (25)

for any αµ ∈ C (it can be easily shown that in this case a(y) ∈
ΨΛ). The spherical harmonic expansion of the free field Green
function for the case of x > y is similar to (10), but with the
role of x and y interchanged. In view of the orthogonality of
the spherical harmonics, after some mathematical manipulation
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it can be shown that
Z

∂Λ

G(z,y)a(y)dS(y) (26)

=

nX
µ=−n

ikjn(kRΛ)hn(kz)RΛY µ
n (ŷ)αµ

= 0, z ∈ R3/Λ

This proves that the reproduced field vanishes in the exterior of
Λ.

Figure 5 shows the reproduction of the source strength func-
tion Y −3

5 (y)/RΛ by a continuous distribution of sources on the
sphere ∂Λ = ΩRΛ . The wave number k considered is one of the
Dirichlet eigenvalues for Λ, more specifically j5(kRΛ) = 0. It
can be observed that the field in the region exterior to the sphere
is zero, while this is not the case for the field in the interior.

The result shown above can be extended to any general
source strength a(y): the field generated by the orthogonal pro-
jection of a(y) onto DV is zero in the exterior of the reproduc-
tion region.

6. CONCLUSIONS

It has been shown that problem of determining the strength func-
tion of the secondary sources for the reproduction of a desired
field in a given control region is uniquely solvable if the wave
number under consideration is not one the Dirichlet eigenval-
ues kn of the control region V . It has been shown that, when
k = kn, the integral operator S is not injective and as a conse-
quence the inverse problem p = Sa is not uniquely solvable. In
this case, any linear combination of the functions a0(y) span-
ning the nullspace of S can be added to one of the possible solu-
tions a(y) in order to give another solution of the inverse prob-
lem (if k 6= kn, the nullspace of S is trivial). Only one of these
solutions, however, will in general allow for the accurate repro-
duction of the desired sound field in the interior of the control
region V (and not only on its boundary).

The case has also been considered of k being one of the
eigenvalues of Λ. This does not affect the uniqueness of the
solution, but the component of the reproduced sound field corre-
sponding to SaD is zero in the exterior of Λ, where aD belongs
to the set defined by equation (23).

Future work will explore strategies to overcome the
nonuniqueness problem discussed here.
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