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ABSTRACT

The contribution of this paper is the parametric formulation of
a sparse representation for synthesizing a signal that has a time-
varying spherical directivity component.

This class of signals can be considered conceptually as
joint angular-temporal impulse responses on the sphere. Using
additive linearity we show how to synthesize these signals from
a sparse discrete summation of elementary components that are
a linear combination of rotation and scattering operators on the
sphere that have reflective and rotational resonant oscillations.

The paper concludes with a discussion of applications of
the method to acoustics and spatial auditory scene rendering
technologies.

1 Introduction

1.1 Resonance Synthesis
Resonance model synthesis is a method for convolution
synthesis of an audio signal with low computational overhead
and very low delay by using a bank of second-order resonant
filters having a combined impulse response [1],

x(t) =
N

∑
k

gke−λkt sin(ωkt +ϕk). (1)

The resonance model shown above, also called an exponen-
tially damped sinusoidal model [2], has a sparse representation
given by the set of N tuples of {gain, decay rate, frequency, phase
offset}, indicated above by {gk,λk,ωk,ϕk}. The representation
can be extracted from data by analysis of the time-varying
spectrum of any sound, and the model is sparse when the
source is a harmonic resonator such as a musical instrument.
To synthesize sound, the model is driven with an excitation
signal, such as an impulse or broad-band noise. This audio
synthesis algorithm has been shown to produce convincing
approximations of the human vocal tract (driven by a glottal
impulse-train) and for certain classes of musical instruments
where the sparse exponential-decay model is a reasonable
approximation of the true impulse response such as bells and
plucked strings.

It should be noted that a dense formulation of the synthesis
is possible with low latency using partitioned convolution.
For very large models this may be more efficient. However,
a useful property of the sparse representation is that it
enables simple parametric expressive and semantic hybridization
transformations (i.e., cross-synthesis, model interpolations,

morphs, etc.). In time-domain resonance synthesis this has
been used to construct new instruments by mixing attributes
of existing instruments in unusual ways, such as overlay of
the envelope of one instrument onto the normalized frequency
content of an instrument of a very different type [3].

The simple form, flexibility, and ease of use of this algorithm
are the source of inspiration for the formulation of a similar
method developed in this paper for synthesizing time-varying
directivity functions on the sphere.

2 Theory of spherical harmonics

2.1 Modal analysis of spherical functions
Consider a real-valued function f (α,β) → R for (α,β) ∈ S(2)
where S(2) is the 2-sphere such that f has a finite norm L2(S(2)).
For the case of acoustics f is scalar and real-valued but vector
and tensor formulations are possible (see Eqn. 2.12 - 2.15 in
[4]). The spherical angle is Ω = (α,β) and dΩ = sin(β)dαdβ.
The use of (α,β) in this paper is for consistency with the system
of Euler rotation angles that are defined according to the x-
convention [5] where the rotation by (α,β) takes the polar axis
vector (0,0,1) to the point (cosαsinβ,sinαsinβ,cosβ).

The function f (Ω) as given can be factored into a (possibly
infinite) linear sum of orthornormal basis elements called the
spherical harmonics. These can be considered conceptually
as the natural modes of radial vibration on an ideal spherical
membrane, of which there are four basic classes: the radial,
zonal, sectorial and tesseral modes. (Figure 1)

Figure 1: Left to right: radial, zonal, sectorial, and tesseral
harmonic modes

When f (Ω) can be factored into these modes using only
a finite number of the basis elements, then f has band-limited
directivity. For the sake of simplicity in the remainder of this
paper the function f (Ω) will be assumed to be band-limited.

2.2 The Spherical Harmonics Transform
The transformation of f to the modal domain is possible using
the spherical harmonics transform SH T . For f with band-
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limited directivity to degree ℓ the forward transform is,

SH T ( f ) = { f̂ (n,m) : n = 0 . . . ℓ,m = −n . . .n} (2)

and each coefficient f̂ is the inner product with a modal basis
element for S(2),

f̂ (n,m) =
Z

Ω∈S(2)
f (Ω)Y m∗

n (Ω)dΩ (3)

where Y m
n (Ω) is the complex spherical harmonic of degree n and

order m, and ∗ is complex conjugation. The Y functions up to
degree 2 are shown in Figure 2.

Figure 2: Y m
n (Ω) for n = 0 . . .2 in rows, m =−n . . .n in columns.

The magnitude of Y is shown as radial displacement of the
surface, and the color is the phase angle mapped to hue (red = 0,
green = π

2 , cyan = π, purple = 3π
2 radians).

The inverse transform SH T −1 can be used to reconstruct f
from f̂ and it is the discrete summation:

f (Ω) =
ℓ

∑
n=0

n

∑
m=−n

f̂ (n,m)Y m
n (Ω) (4)

This reconstruction is also called synthesis, especially when
the coefficients f̂ are derived from some parametric process in
the modal domain.

The spherical harmonics are the preferred basis for S(2) due
to the fact that the application of any linear operator to f̂ is still
band-limited to the same degree.

2.3 Derivation of the spherical harmonics
2.3.1 Motivation

The most common derivation of the spherical harmonics uses a
product of the Legendre polynomials P(cosβ) with the Fourier
transform on S(1) around α. Here an alternative derivation
is shown using a recursive convolution of the Cayley-Klein
parameterization for the special unitary group SU(2) with itself.
The result is the family of Wigner-D matrices that are the
rotation operator on f̂ and the center column of which is Y . The
advantage of this derivation is that all linear operations on f̂ can
be formulated as matrix operations, resulting in a more compact
mathematical notation.

2.3.2 Cayley-Klein Parameterizationof SU(2)

Let p and q be:

p = ei α+γ
2 cos( β

2 )
q = ei α−γ

2 sin( β
2 )

(5)

and the 2x2 unitary matrix U :

U =
(

q p
−p∗ q∗

)
(6)

The matrix U is the Cayley-Klein half-rotation parameter-
ization for the special unitary group SU(2) with Euler angles
(α,β,γ) [6].

2.3.3 The Wigner-D Matricies

The family of Wigner-D matricies are the rotation operator on
f̂ (n,m) by the Euler angles (α,β,γ) ∈ ([0,2π]× [0,π]× [0,2π]).
They are defined for every half-integer degree starting with
U = D 1

2
. Any higher order D matrix is given by the recursive

definition,
Dn = U on D(n− 1

2 ) (7)

where on is the discrete 2D convolution with maximal overhang
on both sides (i.e., image convolution with zero padding, see
[7]). A normalization is also applied to retain numerical stability
(Eqn. 3.2 in [4]).

As an example, the D1 rotation matrix for degree 1 is:

D1 =

 q2
√

2pq p2

−
√

2p∗q qq∗− pp∗
√

2pq∗

p2∗ −
√

2p∗q∗ q2∗

 (8)

The complex-valued Y m
n spherical harmonics are found in

the central column of the corresponding Dn for n a whole integer
and γ = 0 (Eqn. 2.8 in [4]).

The Dn family for integer-valued n can be applied as a single
operator on f̂ by formulating a block-diagonal matrix,

D =

 D0
D1

D2
. . .

 (9)

The D matrix in this form up to degree 2 with (α,β) free
and γ = 0 is shown in Figure 3 and it is apparent that the central
column of each is identical to the rows of Figure 2.

2.3.4 Matrix form of SH T −1

From the block-diagonal form of D, the SH T −1 operation can
be given as a dot product with f̂ by truncating the sub-matrices
of D to their central columns. Let

DY =
(

1 0 1 0 0 0 1 0 0 . . .
)T (10)

so that,
SH T −1( f̂ ) = (DDY ) f̂ (11)
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Figure 3: D(Ω,0) up to degree 2 in block-diagonal form

2.3.5 Complex and Real Representations

Similar to Euler’s formula eiθ = cosθ + isinθ an invertible
transformation exists that that takes f̂ to a new set of coefficients
f̌ that represents f (Ω) in a basis of spherical harmonics that
are strictly real-valued. This transformation is given by a cross-
diagonal matrix Cn with a simple formulation (Eqn. 19 in [8]).
Again the C matrix can be formed as a single block-diagonal
operator from its components,

C =

 C0
C1

C2
. . .

 (12)

and,

C0,1,2 =



√
2 0 0 0 0 0 0 0 0

0 i 0 i 0 0 0 0 0
0 0

√
2 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0
0 0 0 0 i 0 0 0 −i
0 0 0 0 0 i 0 i 0
0 0 0 0 0 0

√
2 0 0

0 0 0 0 0 1 0 −1 0
0 0 0 0 1 0 0 0 1


(13)

Note that the pattern of sign reversals corresponds to the
Condon-Shortly phase convention. The effect of C on D is
shown in Figure 4. Using this transform we have the the formula
for f̌ :

f̌ = C f̂ (14)

and,
f̂ = C−1 f̌ (15)

It is therefore apparent that the real and complex forms of
spherical harmonics are related by a simple invertible linear
operator and are otherwise substantially identical.

Figure 4: Transformation of D(Ω,0) to a real-valued basis by C.

2.3.6 Axisymmetric Convolution

Given a function f (Ω) and a kernel function k(Ω) such that k is
symmetric around its polar axis (i.e., not dependent on α), then
a convolution f ⋆ k can be computed in the domain of spherical
harmonic coefficients:

k ⋆ f = SH T −1(k̂⊙ f̂ ) (16)

And the operator ⊙ is:

k̂⊙ f̂ = {k̂(n,0)× f̂ (n,m) : n = 0 . . . ℓ,m = −n . . .n}, (17)

and,

SH T −1(k̂⊙ f̂ ) = (
ℓ

∑
n=0

n

∑
m=−n

k̂(n,0) f̂ (n,m)) (18)

3 Spherical Excitation Signals

3.1 Directivity Impulse
The Dirac-delta function with respect to spherical angle δ(Ω) is
the impulse function on S(2) (Figure 5). For practical purposes
the impulse is band-limited using a low-pass filter w having
compact support over degrees [0, ℓ] and w(n) → 0 as n → ℓ.
The δ function can be synthesized directly from the analytic
expression of its harmonic coefficients δ̂,

δ(Ω) = SH T −1{δ̂(n,m) = w(n)Y m
n (Ω)} (19)

This also is the basic directivity function used in phase-mode
beamforming for spherical arrays of acoustic transducers where
the shape of w(n) controls a tradeoff between beam width versus
magnitude of beam sidelobes.
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Figure 5: Band-limited Dirac-delta directivity function to degree
3 along x, y and z axes: δ(0, π

2 ),δ( π
2 ,0),δ(0,0)

3.2 Directivity Noise
A function x(Ω) with broad-band random directivity can
be synthesized by randomizing coefficients for real-valued
spherical harmonics. The inverse C operator is used to map these
into complex-valued harmonics for synthesis on S(2).

x(Ω) = SH T −1C−1{x̌(n,m) = w(n)X} (20)

where X is a random variable with uniform distribution on
[−1,1] (Figure 6).

Figure 6: Three samples of real-valued random directivity
functions band-limited to degree 3

4 Directivity Transformations

4.1 Rotations of Spherical Harmonics
First note that the trivial rotation Dn(0,0,0) is the identity
matrix. Rotations of α around the polar axis are given by a
diagonal matrix (Eqn. 2.7 in [4]) that is zero except on the
diagonal where it is

Dn(α,0,0)[m,m] = e−miα (21)

and the notation D[ j,k] is the offset row-column index so that
[0,0] is the center element of a square matrix with odd-numbered
dimensions.

Similarly a rotation by γ is a diagonal matrix,

Dn,m(0,0,γ)[m,m] = emiγ. (22)

A rotation by β away from the polar axis not a diagonal
matrix. For β in general the matrix is computationally expensive
to maintain, however for the case of β = π

2 it is strictly real-
valued and has a sparse block-diagonal form. For example, the
fixed rotations at degrees 1 and 2 are:

D1(0,
π
2
,0) =


1
2 − 1√

2
1
2

1√
2

0 − 1√
2

1
2

1√
2

1
2

 (23)

D2(0,
π
2
,0) =



1
4 − 1

2

√
3
2

2 − 1
2

1
4

1
2 − 1

2 0 1
2 − 1

2√
3
2

2 0 − 1
2 0

√
3
2

2
1
2

1
2 0 − 1

2 − 1
2

1
4

1
2

√
3
2

2
1
2

1
4


(24)

A general rotation by β can be refactored as a series of
elementary rotations:

D′ = D(0, π
2 ,0)

D(0,β,0) =

D( π
2 ,0,0)D′D(β+π,0,0)D′D( π

2 ,0,0).

(25)

As such it is only necessary to retain D(0, π
2 ,0) to compute

the rotation of f̂ by any element (α,β,γ) in the rotation group
SO(3).

4.1.1 Verification of Factorization

Let A(α,β,γ) be the 3x3 Euler rotation matrix according
to the x-convention [5]. A has a trivial decomposition as
A(α,0,0)A(0,β,0)A(0,0,γ). Then,

A(
π
2
,0,0) =

 0 1 0
−1 0 0
0 0 1

 (26)

A(0,
π
2
,0) =

 1 0 0
0 0 1
0 −1 0

 (27)

A(β+π,0,0) =

 −cosβ −sinβ 0
sinβ −cosβ 0
0 0 1

 (28)

and,

A(
π
2
,0,0)A(0,

π
2
,0)A(β+π,0,0)A(0,

π
2
,0)A(

π
2
,0,0) = (29) 1 0 0

0 cosβ sinβ
0 −sinβ cosβ

 = (30)

A(0,β,0). (31)

Therefore, any A(α,β,γ) can be computed using variable
rotations in (α,γ) and a fixed rotation in β by π

2 radians.

4.2 Scattering Operator
The convolution of f by a kernel k when k is rotationally
symmetric around its axis is computed in the modal domain
by ⊙ (Section 2.3.6). Any function f can be reduced to the
axisymmetric condition by truncating its modal coefficients to
only the zonal harmonics. The zonal harmonics correspond to
the coefficients where m = 0. Let T denote the zonal truncation
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operator as a block-diagonal matrix, e.g.,

T0,1,2 =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(32)

4.2.1 Scattering Kernel from the Dirac Impulse

Let h be the scattering kernel having the form of a circularly
expanding wavefront. Intuitively this is the analogue of the
Huygens principle as applied in S(2). The scattering kernel is a
sub-class of kernels having a simple analytic formula as well as
a long-term low-pass convergent behavior (an extension of this
work might consider the more general class of complex-valued
filters acting on the modal degrees).

This kernel has an analytical formulation by taking the
zonal-truncation of a Dirac-delta directivity function after
rotation by an angle β. The scattering angle ρ is used for the
parameterization of h:

ĥ(ρ) = T D(0,ρ,0)δ̂(0,0) (33)

or,
ĥ(ρ) = T δ̂(0,ρ) (34)

For ρ∈ (0, π
4 ), the action of h is simply a low-pass filter with

respect to the modal degree n. The angle controls the steepness
of the filter slope. For ρ ∈ ( π

4 ,π) the action of h in absolute
value is still a low-pass filter, but it has a resonant structure due
to complex rotation with periodicity (Figure 7).

4.2.2 Reflection Rate Factorization

A better parameterization of the scattering operator provides
control over the rate of reflective oscillation rather than being
restricted to periodicity on the integer grid with respect to t.
To do this we can transform h into a phase-magnitude form:
h = |h|eiθt .

5 Time Varying Transformations
At this point the theory is sufficient to define a transformation
G( f̂ , t) that produces a time-varying directivity response
g( f , t) = SH T −1(G( f̂ , t)) where the impulse response is
recovered when f is the Dirac-delta directivity function δ(Ω).

5.0.3 Periodic Rotation

Continuous rotation with rate ω around an axis u⃗ = (x,y,z),
where u⃗ is at the rotation Du = D(αu,βu,0) away from the pole,
is:

Gr(ω, u⃗, f̂ , t) = D−1
u D(2π(ωt),0,0)Du f̂ (35)

5.0.4 Rate Scattering

Scattering with shape ρ, decay rate λ and reflection rate θ is:

Gs(ρ,λ,θ, f̂ , t) = (|ĥ(ρ)|λteiθt)⊙ f̂ (36)

5.0.5 Composition of Transforms

A joint rotational and scattering transform is given by the
composition:

Gc = Gr(Gs) (37)

5.1 Directivity Resonance Synthesis
The total behavior of G is a discrete sum of the previous two
types of transformation:

G( f̂ , t) =
N

∑
k

Gr(Gs( f̂ ,ϕk,λk,θk), u⃗k,ωk) (38)

A directivity resonance synthesis model is then given by the
set of N tuples of (decay rate, scattering shape, reflection rate,
rotation vector, rotation rate) notated by (λk,ϕk,θk, u⃗k,ωk).

The time-domain directivity impulse response is phase-
invariant for summations of rotations as in Figure 9 (i.e., is
always real for real input), but is complex when scattering exists
with resonant reflections.

5.1.1 Recursive Computation

The discrete time-varying synthesis of g( f , t) is possible with a
recursive formulation,

g( f , t) = g(g( f , t −dt),dt) (39)

Therefore the computation is efficient, requiring only the
previous state g( f , t −dt) to be stored in memory. At each time
slice the output of the model from the previous time is used as
the input, and the transformation function g remains static. This
demonstrates that the model is a resonant system.

If in addition the source f is a time-varying signal f (t) then
the new data integrates additively into the recursive computation:

g( f , t) = g(g( f (t −dt), t −dt)+ f (t),dt) (40)

An example of the computation at multiple time slices is
shown in Figures 8 and 9.

6 Applications in Acoustics

6.1 Ambisonic Transformations
Ambisonics is a practice in audio engineering whereby
loudspeakers are distributed on a spherical shell for the
reconstruction of the interior sound field. It also involves
sampling of acoustic spaces with spherical microphone arrays,
typically having a compact ball geometry.

The formulation of directivity transformations by the
scattering and rotation operators may provide an answer to
the question of how to definine the class of valid ambisonic
transformations in a more general way [9]. In particular it
may be useful to parameterize a reverberation effect for the
ambisonics domain that is true to the geometry of the sphere.
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Figure 7: Top row: Rotations of the Dirac-dirac directivity function away from the polar axis, D(0,β,0)δ̂(0,0) for β ∈ [0,π]. Middle
row: Axisymmetric scattering kernel obtained by truncating the above to the zonal harmonics, ĥ(ρ) = T D(0,ρ,0)δ̂(0,0).
Bottom row: Real-part of decay in modal coefficients per degree n versus time t.

Figure 8: Top row: Complex-valued response of a scattering kernel with resonant reflections Gs( 4π
6 , 4π

6 , 1
4 ), excited from random initial

conditions. Note a reflection occurs every time the signal has zero imaginary component. Bottom row: Normalized real-part of the
above response.

Figure 9: A directivity resonance model consisting of sum of two orthogonal rotations Gr( π
4 ,(1,0,0)) + Gr( π

4 ,(0,1,0)). Top row:
impulse response from δ(0, π

2 ). Bottom row: impulse response from δ( π
4 , π

4 ). Observe that the decay rate of higher-degree harmonics
is faster when the direction of the exication impulse is coincident with an axis of rotation (as in the top example) and slower otherwise
(bottom).

6.2 Room Impulse Response Analysis
Thus far we have considered only the generative synthesis of
directivity resonance models. It is natural to consider a possible
analysis method for extracting such models from recorded data.
This may require the introduction of more a sophisticated model,
for example by including time-delay structures as in the damped-
delayed sinusoidal model [2]. Unfortunately this approach may
have limited utility since rooms are not spherical in shape and
so a room impulse response is not band-limited in SH T (plane
waves are not band-limited in directivity), thus the estimation
could have a large error.

6.3 Auditory Scene Synthesis
Compact spherical loudspeaker arrays can reproduce high-
degree directivity patterns in real-time [10]. In addition
the simulation of source directivity is possible in wave field
synthesis [11] and headphone auditory display systems.

Currently many systems implementing source directivity
are parameterized by static descriptions of beam shape and
orientation. This parameterization is adequate for some existing
applications such as computer gaming. However the methods
shown here provide a means to express dynamic directivity
systems that respond to input in real-time. For example a
directivity resonance model could be used to synthesize the
directivity component of a physical instrument model that is
excited directionally using a haptic controller [12].

6.4 Perception of Directivity
An informal study on the usable range of rotation frequencies
for a Dirac-delta beam was carried out in [12]. From this
information it is reasonable to conclude that all directivity effects
need to occur at sub-audible frequencies to avoid perceptual
fusion (up to about 10 Hz), and that rotation rates should be
controlled on a log-scale to map to a relatively linear perceptual
effect.
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