
Proc. of the 2nd International Symposium on Ambisonics and Spherical Acoustics May 6-7, 2010, Paris, France

SPHERICAL LOUDSPEAKER ARRAY MODELING AND CONTROL USING
DIFFERENT BASIS FUNCTION REPRESENTATIONS

Dima Khaykin and Boaz Rafaely

Department of Electrical and Computer Engineering
Ben-Gurion University of the Negev

Beer-Sheva 84105, Israel
{khaykin,br}@ee.bgu.ac.il

ABSTRACT

A potential use of a spherical loudspeaker array for producing
arbitrary radiation patterns has recently been studied. Differ-
ent control strategies were developed and proposed for this goal.
This work attempts to make a connection between two popular
control strategies: the loudspeaker units input signals and the
gains of spherical harmonics directivities. These control strate-
gies make use of two sets of basis functions: caps’ velocity and
spherical harmonics, respectively, that fully span the radiation
subspace. A new set of basis functions that spans the same sub-
space as spherical harmonics and cap velocity is developed using
a singular-value decomposition and shown to be of finite order,
unlike the spherical harmonics set. These new basis functions
provide an indication of the way the spherical loudspeaker ar-
ray produces the spherical harmonics modes of different orders.
Control strategy based on these new basis functions is formu-
lated and its performance compared to already mentioned strate-
gies by producing quiet zones as an application of active sound
control. In addition, the ability of this new control strategy to
design various radiation patterns analytically, rather than by nu-
merical optimization, is discussed and demonstrated.

1. INTRODUCTION

The study of spherical loudspeaker arrays has been an active area
of research in recent years. Due to its compact design, which
usually consists of a set of loudspeakers mounted around the
surface of a sphere, it can be used as an effective device for syn-
thesis of a sound field. Different models of the spherical loud-
speaker array have been developed and studied. A model ofL
spherical caps positioned on the sphere surface with each im-
posing a surface radial velocity at the sphere surface segment it
covers [1, 2], has been considered as a good approximation to a
real spherical loudspeaker array withL loudspeakers positioned
around the sphere surface. Using a spherical loudspeaker array
as a multi-channel source and controlling each loudspeaker unit
individually, complex sound radiation patterns can be achieved.
The need to design the radiated sound field by controlling the
loudspeaker units in a multi-channel system framework is com-
mon in applications such as music synthesis, active control of
sound, and room acoustics. Various control strategies of loud-
speaker units were proposed and discussed in recent years.

The aim of this paper is to provide analysis of the advan-
tages and disadvantages of using different types of representa-
tions for the modeling and control of sound radiation with a loud-
speaker array. Due to the spherical design of the loudspeaker ar-
ray, spherical harmonics are the most natural and common basis

functions for controlling the array radiation pattern. As part of
the solution of the Helmholtz equation in spherical coordinates,
spherical harmonics form a natural basis for representation of
sound source directivity and provide full analytical analysis of
the sound field and sound system. Thus, a simple and effective
way to produce arbitrary radiation patterns is to control the am-
plitudes of these spherical harmonics functions, representing, for
example, array surface velocity or the produced far-field pres-
sure. However, to achieve arbitrary radiation patterns, full con-
trol over amplitudes of an infinite number of spherical harmonics
is required. Because the number of loudspeaker units in an array
is limited in practice, the number of spherical harmonics func-
tions that can be controlled is also limited. Hence, harmonics of
the higher orders, which cannot be controlled directly, may pro-
duce errors in the radiated sound field. Control of a finite set of
spherical harmonics without considering the effect of the radi-
ated high-order harmonics, may produce inferior control of the
array output, as recently presented in the application of the array
for active control of sound [3].

Control over the velocities of the caps, or the loudspeaker
units input signals, may be considered a more direct and prac-
tical approach as it uses the physical input signals of the multi-
channel system directly. In their work, Aviziens et al. [4] im-
plemented such a strategy to produce radiation patterns with a
spherical loudspeaker array consisting of 120 elements. In addi-
tion, the rationale behind this approach is that the control strat-
egy in the space domain, rather than the spherical harmonics,
does not require any assumptions concerning the spherical har-
monics order. In other words, this control strategy does not re-
quire a basis of an infinite dimension, but makes use of a finite
number of functions, representing cap velocity or loudspeaker
inputs. However, the drawback of this strategy is that in most
cases only a numerical analysis can be employed, as the basis
functions in this case cannot be readily used to analytically rep-
resent other forms of sound fields, such as a plane wave or a
point source. This is in contrast to the use of spherical harmon-
ics basis functions, where plane waves and point sources can be
represented analytically in a straight-forward manner.

This paper proposes an intermediate basis function, combin-
ing spherical harmonics functions and cap velocity functions. By
performing singular-value decomposition (SVD) of the transfer
matrix relating the spherical Fourier coefficients of the (contin-
uous) radial surface velocity to the vector of cap velocities, we
form a new set of basis functions that spans the same subspace
as the cap velocities functions and the spherical harmonics func-
tions for the spherical array. We show that this new set of basis
functions is closely related to spherical harmonics; however, it
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is finite, and hence has an advantage over the spherical harmon-
ics basis set. In addition, the paper presents an investigation of
the use of the various basis functions in the application of local
active control of sound. Zones of quiet are generated using the
mentioned control strategies and the results are compared and
discussed.

2. SOUND RADIATION FROM SPHERICAL SOURCES

This section introduces two spherical sources that are considered
throughout this paper:

S1. A sphere with a continuous radial velocity distribution
on its surface.

S2. A rigid sphere withL spherical caps positioned on its
surface at locations(θl, φl), each imposing a constant radial sur-
face velocity ofvl, l = 1, ..., L, at the surface segment they
cover.

The acoustic pressure defined on the surface of a sphere is
denoted byp (k, r, θ, φ), where(θ, φ) with a sphere radiusr,
combined to define the standard spherical coordinates [5], andk
is the wavenumber.

The sound field produced by a spherical source having coef-
ficients of radial surface velocityunm is given by [6]:

p (k, r, θ, φ) = iρ0c

∞
∑

n=0

n
∑

m=−n

hn (kr)

h
′

n (kr0)
unm (k, r0)

×Y
m
n (θ, φ) , (1)

wherehn (kr) is the spherical Hankel function of first kind
and ordern, h

′

n (·) represents derivative, andY m
n (θ, φ) are the

spherical harmonics of ordern and degreem [5]. r0 is the radius
of the sphere,c is the speed of sound, andρ0 is the density of the
air. By defining

gn =
4π2

2n+ 1
[Pn−1 (cosα)− Pn+1 (cosα)] , (2)

wherePn−1 (·) is the Legendre polynomial andα is the aperture
angle of the cap, the spherical Fourier coefficients of the radial
surface velocity are related to the caps’ velocity of S2 by [2]

unm (k, r0) = gn

L
∑

l=1

vl (k, r0)Y
m∗

n (θl, φl). (3)

Equations (1) and (3) provide the relation between the
acoustic pressure and the caps’ velocity, forming the model for
source S2 that can be used to predict the acoustic pressure field,
given the radial velocity of each cap. It is worth noting that with
L spherical caps, onlyL spherical harmonics inunm can be con-
trolled, defined in the rangen ≤ N, −n ≤ m ≤ n, with N
satisfying

(N + 1)2 ≤ L. (4)

Hence, by truncating the sum in (1), it can be re-written in a
matrix form

p = Au. (5)

wherep is the vector of the desired acoustic pressure samples,
given byp = [p1, p2, ..., pQ]

T , with pq = p (k, rq, θq, φq),

Q × (N + 1)2 matrix A is defined by the elementsAqj and
(N + 1)2 × 1 vectoru defined by the elementsuj , given by:

Aqj = iρ0c
hn (kr)

h
′

n (kr0)
Y

m
n (θq, φq) (6)

uj = unm

j = n
2 + n+m+ 1, n ≤ N, −n ≤ m ≤ n,

In the same way, the relation between the acoustic pressure
and the caps’ velocity can be written. Let us re-write (3) as:

u = GY
H
v, (7)

wherev = [v1, v2, ..., vL] represents a vector of the radial
caps’ velocity, the matrixY is of dimensionsL × (N + 1)2

and is defined by elementsYlj , given byYlj = Y m
n (θl, φl),

where j is defined in (6) and(N + 1)2 × (N + 1)2 matrix
G = diag[g0, g1, g1, g1, ..., gN ]. Now, by substituting (7) in
(5) we get the final expression

p = AGY
H
v. (8)

In [2], Rafaely showed that for order-limited radial velocity,
sources S1 and S2 can be used to produce the same acoustic
pressure field on the assumption that (4) stands. Therefore, one
may prefer the use of source S1 due to its relative simplicity and
ease of analytical analysis.

3. ACTIVE CONTROL OF SOUND

Active control of sound is achieved by superimposing the pri-
mary sound fieldpp with the secondary sound fieldps, produced
by an acoustic source. As an application, we make an attempt to
produce quiet zones by using two control strategies over spher-
ical loudspeaker arrays: control over the gains of spherical har-
monics directivities, and control over the velocities of the spher-
ical caps.

The first strategy makes use of a least-squares solution as a
numerical optimization overu:

u = A
†
p (9)

where(·)† represents the pseudo-inverse operation.
The second control strategy uses the same least-squares so-

lution as a numerical optimization, but overv:

v =
(

AGY
H
)†

p. (10)

The components of vectorp are the samples of a given sound
field ps.

As mentioned at the end of previous section, if the re-
quired radial velocity is order-limited such that (4) stands, the
two aforementioned control strategies provide identical results.
However, in the case that the desired acoustic pressure is more
complicated and requires a radial velocity of infinite order or at
least such that (4) does not stand, the second strategy, based on
the velocity caps’ optimization, is a preferred strategy, since it
makes no assumption on the order of harmonics that are con-
trolled by the spherical array [3].

The following simulation example aims to compare the per-
formance of the two aforementioned control strategies. The
experiment was performed using a spherical source of radius
r0 = 0.1 meters withL = 84 uniformly-distributed caps on
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its surface. Since the source has84 degrees of freedom, using
the first control strategy we can control only harmonics up to or-
derN = 8 and the harmonics of higher order are neglected. In
the second case, harmonics up toN = 40 are incorporated to
represent “infinite” order.

The primary sound fieldpp is composed of 20 plane-waves
with unit magnitude, frequency of1000 Hz, and random phases
and arrival directions. Two control strategies were implemented
to minimize the total pressurept, which is the superposition of
the primary and secondary sound fields, i.e.,pt = pp + ps, at a
set of locations in the ranger ∈ [0.2, 0.3] , θ = 90o, andφ ∈

[0o, 360o). Attenuation levels, calculated as20 log10
(

pt
pp

)

, are

presented in Fig. 1, and the desired quiet zone is defined by
dashed lines. Fig. 1(a) presents the result achieved by control
over the spherical Fourier coefficients of the radial surface ve-
locity, i.e., using (9), when harmonics up to orderN = 8 are
used. Fig. 1(b) shows the attenuation levels achieved by the
second control strategy, based on an optimization over the caps’
velocity directly, i.e., using (10). Comparing these results shows
that the caps’ velocity strategy is a preferred control strategy in
this case.

To make an attempt to connect the spherical harmonics and
caps’ velocity control strategies, in the next section we develop
a new basis function that spans the same subspace as spherical
harmonics and caps’ velocity, but forms a finite set and is closely
related to spherical harmonics.

4. A RELATION BETWEEN SPHERICAL HARMONICS
AND CAPS’ VELOCITY

In this development we make no assumption on the maximum
order of radial velocity, hence orderN represents “infinity”
throughout this section. However, the number of spherical caps
L is assumed to be finite. Let us perform the singular-value de-
composition (SVD) of the transfer matrix relating the spherical
Fourier coefficients of radial surface velocity to caps’ velocity
from (7):

GY
H = SΣR

H (11)

where(N + 1)2 × (N + 1)2 matrix S andL × L matrix R

comprise the left and right singular vectors, and matrixΣ hasL
singular values and(N + 1)2 − L zero rows. By substituting
(11) in (7) and multiplying from left bySH we get

S
H
u = ΣR

H
v. (12)

Let us define two terms:a ≡ RHv andb ≡ SHu. By using
the unitary property ofS andR, respectively, we get:

v = Ra, (13)

u = Sb. (14)

The elements of these vectors can be written as

vl =
L
∑

p=1

Rlpap (15)

uj =

(N+1)2
∑

s=1

Sjsbs. (16)
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Figure 1: Magnitude, in decibels, of the acoustic pressure pro-
duced by a spherical source withL = 84 caps, designed to create
a quiet zone at a range of points aroundr ∈ [0.2, 0.3] , θ = 90o,
andφ ∈ [0o, 360o), with control strategy based on (a) spherical
Fourier coefficients of radial surface velocityu, (b) caps’ veloc-
ity v.

Now, the continuous velocity functionv (θ, φ) can be calculated
in two ways. Using cap velocity basis functionsΠ(Θl),

v (θ, φ) =
L
∑

l=1

vlΠ(Θl) , (17)

whereΠ(Θl) andΘl are defined as

Π(Θl) =

{

1, Θl ≤ α
0, elsewhere

, (18)

cosΘl = cos θ cos θl + cos (φ− φl) sin θ sin θl, (19)

or using spherical harmonics,

v (θ, φ) =

(N+1)2
∑

j=1

ujYj (θ, φ) . (20)

By substituting (15) in (17) we get

v (θ, φ) =
L
∑

l=1

L
∑

p=1

RlpapΠ(Θl) , (21)
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and by changing the order of sums, new basis functions
Ψp (θ, φ) are obtained

v (θ, φ) =
L
∑

p=1

apΨp (θ, φ) , (22)

Ψp (θ, φ) =
L
∑

l=1

RlpΠ(Θl) . (23)

In the same way, by substituting (16) into (20) we can obtain
another set of basis functions

v (θ, φ) =

(N+1)2
∑

s=1

bsΦs (θ, φ) , (24)

Φs (θ, φ) =

(N+1)2
∑

j=1

SjsYj (θ, φ) . (25)

Actually, sinceb = Σa, Ψp (θ, φ) is equal toΦs (θ, φ) up
to a constant singular value ofΣ. SinceΣ has zero rows, the
number of new basis functions and related coefficients is finite
and equal toL, the number of singular values, meaning the sum
in (24) is up toL or equivalent, and only the firstL columns of
matrixS are relevant. Hence, this set has a finite order compared
to the spherical harmonics basis set.

5. NEW BASIS FUNCTIONS ANALYSIS AND
IMPLEMENTATION

In this section, the new basis functions are illustrated to visu-
ally demonstrate the relation between spherical harmonics and
caps’ velocity functions. A new control strategy, using the new
basis functions, is formulated, and its performance compared to
aforementioned control strategies. In addition, the advantages of
implementation of the new basis functions are discussed.

In this experiment we usedN = 40 to represent “infi-
nite” order and12 caps positioned on the sphere. Figure 2
shows the first12 basis functionsΦs (θ, φ). This figure ef-
fectively demonstrates the connection between the caps’ ve-
locity and spherical harmonics. As can be seen in Fig. 2,
Φs (θ, φ) functions are closely related to spherical harmonics
and can be divided into the same groups as spherical harmonics:
Φ1 (θ, φ) ,Φ2−4 (θ, φ) ,Φ5−9 (θ, φ) ,Φ10−12 (θ, φ). By exam-
iningΦs (θ, φ), one can perceive an indication of how the spher-
ical source caps vibrate to make an attempt to produce the ra-
diation pattern of spherical harmonics shapes. For example,
to produce spherical harmonics of ordern = 0 (monopole),
all the caps oscillate coherently as demonstrated byΦ1 (θ, φ).
The second group,Φ2−4 (θ, φ), are related to spherical harmon-
ics of ordern = 1, as they produce dipoles. According to
Φ5−9 (θ, φ), the sphere caps are related to spherical harmon-
ics of ordern = 2, which look like quadrupoles. The rest,
Φ10−12 (θ, φ), are related to spherical harmonics of ordern = 3.

A new control strategy, using the new basis functions, can
now be formulated. This control strategy benefits from finite
order and makes no assumption on the order of spherical har-
monics that can be controlled. Hence, the ability to produce a
complex sound field may be greater than with the strategy based
on spherical harmonics.

By substituting (14) into (5) we get the relation between the
acoustic pressure and new coefficients

p = ASb. (26)

Figure 2: First12 basis functionsΦs (θ, φ) developed in (25).

Since no assumption is made on the order of spherical harmon-
ics, N , it can be assumed “infinite”. However, the number of
coefficients in vectorb is finite; hence it has to be equal to the
number of capsL. Coefficientb can be calculated by using the
same least square solution as used in (9) and (10)

b = (AS)† p. (27)

To compare the performance of this new control strategy
with the two control strategies mentioned before, the same ex-
perimental study that was described in Section 3 was performed
in this case. The order of harmonics was set toN = 40, to
represent the “infinite” order, and the number of caps was, as in
the previous experiment,L = 84. Since the source has84 de-
grees of freedom, the maximum components of vectorb are also
84, hence only84 columns in matrixS are relevant. Therefore,
matrixS is now of dimensions(N + 1)2 × L.

Figure 3 shows the attenuation levels achieved by the new
control strategy. It can be noticed that the new strategy outper-
forms the spherical harmonics strategy and achieves the same
results as the caps’ velocity strategy.

This experiment showed the advantage of using new basis
functions compared with a spherical harmonics set. To empha-
size the advantage over the caps’ velocity basis functions, we
provide a simple example. To achieve most radiation patterns by
controlling the caps’ velocity directly, only numerical optimiza-
tion can be implemented. In contrast to this approach, use of
new basis functions can provide a simpler way to realize these
patterns. Let us consider a cardioid radiation pattern. By com-
biningΦ1 and one of the basis functions (or linear combination
of them) demonstrated in the second row in Fig. 2, i.e.,Φ2−4,
we can easily realize cardioid radiation pattern. For example, let
us addΦ1 andΦ3, i.e., set the components of vectorb as follows

b = [1, 0, 1, 0, ..., 0]T . (28)

Figure 4 shows the result of this sum. The radiation pattern can
be achieved now by substituting (28) in (26). The experiment
was performed using a spherical source of radiusr0 = 0.1 me-
ters withL = 12 uniformly-distributed caps on its surface. Fig-
ure 5 shows the radiation pattern, i.e., sound pressure as mea-
sured atr = 0.5 and frequencyf = 1000 Hz. The pattern
was found to be very similar to the cardioid pattern as planned.
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Figure 3: Magnitude, in decibels, of the acoustic pressure pro-
duced by a spherical source withL = 84 caps designed to create
a quiet zone at a range of points aroundr ∈ [0.2, 0.3] , θ = 90o,
andφ ∈ [0o, 360o), with control strategy based on the new set
of basis functions developed in Sec. 4.

One can notice that the radiation pattern is smoothed (consists
of low-order spherical harmonics only), despite being realized
by spherical caps, which are shown to also produce high-order
harmonics. The reason for this is thehn(kr)

h
′

n(kr0)
term that oper-

ates as a low order filter. For extended discussion, the reader is
referred to [2].

6. SUMMARY AND CONCLUSIONS

In this paper, we developed new basis functions that relate to
spherical harmonics and caps’ velocity. These new basis func-
tions illustrate how the spherical source produces modes that are
related to the spherical harmonics modes. In addition, control
strategy was presented based on these new basis functions. This
set of basis functions is finite; hence the ability to produce a
complex sound field may be greater than the strategy based on
spherical harmonics. This was confirmed by simulation stud-
ies. Analytical solution of the realization of radiation patterns
was shown to be an advantage over the control strategy based on
loudspeaker units input signals, which requires numerical opti-
mization. As an example, cardioid radiation pattern was realized
using the new set of basis functions.
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