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ABSTRACT

An overview of HOA technology is presented. First, HOA
defines a format of spatial audio which has many attractive prop-
erties, such as scalability and flexibility. Besides, this format is
independent of the encoding (i.e. microphone signals) and de-
coding (i.e. loudspeaker signals) formats. Second, HOA pro-
vides tools to record, or create, and render a spatial sound scene.
These tools, which rely on a specific encoding and decoding of
spatial information, will be analysed and discussed from a both
theoretical and practical point of view. Third, the final issue is
the assessment of the virtual sound scene that is (re)created by
HOA. The toolkit of available methodologies and criteria is ex-
amined.

1. INTRODUCTION

Ambisonics and its generalization Higher Order Ambisonics
(H.O.A.) are one promising technology of sound spatialization,
allowing one to record or create a spatial sound scene. Since
the early work of Gerzon [1], a hughe amount of both hardware
and software developments has provided microphone arrays and
plugins, which today place HOA as a real and recognised tool
of spatial audio engineering. The flexibility of HOA rendering,
which is compliant with various equipements, including conven-
tional multichannel setup (eg 5.1), loudspeaker array of head-
phones, is a strong advantage. The objective of this paper is not
to present particularly new information, but rather to gather all
what is known or still questioned about HOA audio tools, in-
cluding all the steps (and the available choices involved within)
from the recording of sound sources to their playback. However,
because HOA is also a spatial audio format which is able to rep-
resent and model a sound scene, this issue will be first discussed.

2. A MODEL FOR REPRESENTING A SPATIAL
SOUND SCENE

2.1. Spherical harmonics expansion

HOA technology is based on the expansion of an acoustic wave
on the eigenfunctions of the acoustic wave equation within
spherical coordinates (r: radius, ϕ: azimuth angle, θ: eleva-
tion angle) [2]. These eigenfunctions are defined by spherical

Bessel functions jm(kr)1 et nm(kr)2 and/or spherical Hankel
functions h+

m(kr)3 and h−m(kr)4, in combination with spherical
harmonics Y σ

mn(ϕ, θ). The latter describe the angular variation
of the acoustic wave, whereas the former account for the radius
dependencies.

The whole space is divided into two subspaces: one sub-
space Ω1 where all the sound sources are gathered and one sub-
space Ω2 where no acoustic source is present and which defines
therefore the listening area. Given the spherical geometry of
the problem, the space is organized on the basis of concentric
spheres centered on the origin of the coordinate system, which
does not limit the validity of the following. Thus the subspace
Ω2 is defined as the area within two spheres of radius R1 et R2

so that: R1 < |~r| = r < R2, where r is the radius associated
to the listening point ~r. The radius R1 et R2 are chosen in order
to discard any sound source from Ω2. The subspace Ω1 is the
remaining area (i.e. inner space of radius R1 sphere and outer
space of radius R2 sphere). As pointed out in [3], this space di-
chotomy strongly resembles to that of the Kirchhoff Integral in
the theory of Wave Field Synthesis (WFS).

Under these assumptions, the acoustic pressure p(~r, ω) at
any point ~r located inside Ω2 is expressed as a weighted sum of
the eigenfunctions:

p(~r, ω) =

+∞X
m=0

imh−m(kr)

mX
n=0

X
σ=±1

Aσ
mn(ω)Y σ

mn(ϕ, θ)

+

+∞X
m=0

imjm(kr)

mX
n=0

X
σ=±1

Bσ
mn(ω)Y σ

mn(ϕ, θ)

(1)

The spherical harmonics are given by:

Y σ
mn(ϕ, θ) =

s
(2m + 1)εn

(m− n)!

(m + n)!
Pmn(sin θ)

×
�

cos(nϕ) si σ = +1
sin(nϕ) si σ = −1

(2)

where εn equals 1 if n = 0 and 2 if n > 0. The functions

1Spherical Bessel functions of the first kind.
2Spherical Bessel functions of the second kind or Neumann func-

tions.
3Spherical Hankel functions of the first kind: wave travelling along

decreasing r.
4Spherical Hankel functions of the second kind: wave travelling

along increasing r.
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Figure 1: Illustration of the Bessel and Hankel spherical functions, and the spherical harmonics.
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Pmn(sin θ) are the associated Legendre functions defined by:

Pmn(sin θ) =
dnPm(sin θ)

d(sin θ)n
(3)

where Pm is the Legendre polynomial of the first kind of degree
m.

It should be born in mind that the spherical harmonics Y σ
mn

form an orthonormal basis in terms of the scalar product over the
sphere of radius r = 1, i.e.:

1

4π

Z 2π

ϕ=0

Z π
2

θ=−π
2

Y σ
mn(ϕ, θ)Y σ′

m′n′(ϕ, θ) cos θ dθdϕ

= δmm′δnn′δσσ′

(4)

The coefficients Aσ
mn and Bσ

mn of the spherical harmonics ex-
pansion (cf. Equ. 1) are therefore obtained by computing
the scalar product of the acoustic pressure with the spherical
harmonics and by applying their property of orthonormality
(cf. Equ. 4). The knowledge of both the acoustic pressure
p(R, ϕ, θ, ω) and velocity vn(R, ϕ, θ, ω) over a sphere5 of ar-
bitrary radius R is required, as shown in [3]. If Uσ

mn and V σ
mn

represent the product scalar of respectively the pressure and the
velocity with the spherical harmonics:

Uσ
mn(ω) =

1

4πR2

Z 2π

ϕ=0

Z π
2

θ=−π
2

p(R, ϕ, θ, ω)

× Y σ
mn(ϕ, θ) cos θ dθdϕ

V σ
mn(ω) =

1

4πR2

Z 2π

ϕ=0

Z π
2

θ=−π
2

vn(R, ϕ, θ, ω)

× Y σ
mn(ϕ, θ) cos θ dθdϕ

(5)

the coefficients Aσ
mn and Bσ

mn are derived as:

Aσ
mn(ω)

i−m
=

j′m(kR)Uσ
mn(ω)− icRj−m(kR)V σ

mn(ω)

j′m(kR)h−m(kR)− jm(kR)h′−m(kR)

Bσ
mn(ω)

i−m
=

h′m(kR)Uσ
mn(ω)− icRh−m(kR)V σ

mn(ω)

jm(kR)h′−m(kR)− j′m(kR)h−m(kR)

(6)

The coefficients Aσ
mn et Bσ

mn define the HOA representa-
tion of the acoustic wave. In the previous equations, these sig-
nals are in the frequency domain since they originate from the
pressure and velocity expressed as in the frequency domain (cf.
Equ. 5). Alternatively, signals in the time domain may be con-
sidered.

2.2. The HOA ”wavelets”

The term ”wavelet” refers here to the reconstruction of the pri-
mary wave as a sum of elementary wavelets by WFS. The
general form of the HOA wavelets is defined (cf. Equ. 1)
by jm(kr)Y σ

mn(ϕ, θ) or h−m(kr)Y σ
mn(ϕ, θ). Each elementary

wavelet is characterized by specific spatial features which de-
pend on the order m of the associated HOA component. The

5In other words, the primary wave to be reproduced is described by
the acoustic pressure and velocity recorded along a close surface, which
is strongly similar to the representation of the spatial information by
WFS [4]. What’s more the choice of the radius R of the sphere where the
soundfield is recorded is arbitrar in both HOA and WFS, at least theoreti-
cally. However it will be seen that, in practice, this choice is constrainted
by the Bessel and Hankel spherical functions.

angular variation (as a function of the direction described by the
angles ϕ and θ) becomes faster and faster as the order m in-
creases. As for the variation along the radius r, two types of
wavelet are distinguished [5]:

• waves travelling outwards from the origin (radial depen-
dency described by h−m),

• waves travelling inwards to the origin (radial dependency
described by j−m).

The former represent the contribution of sound sources located
inside the sphere of radius R1, whereas the latter correspond to
sound sources outside the sphere of radius R2. Thus the two
sets of HOA components, i.e. the Aσ

mn set and the Bσ
mn one,

discriminate inner sources (r < R1) from outer sources (r >
R2), in a way very similar to WFS [4].

Consequently, if no inner sound sources is present inside the
sphere of radius R1, all the coefficients Aσ

mn are null and Equ.
1 turns out to be:

p(~r, ω) =

+∞X
m=0

imjm(kr)

mX
n=0

X
σ=±1

Bσ
mn(ω)Y σ

mn(ϕ, θ) (7)

The sphere of radius R1 is then useless, so that the listening
area Ω2 includes all the inside of the sphere of radius R2. The
well-known ”B format” proposed by Gerzon [1] is a particular
case of Equ. 7, consisting in truncating the expansion up to the
order m=1. Therefore only the first four components (B1

00 ≡
W , B1

11 ≡ X , B−1
11 ≡ Y , B1

10 ≡ Z) are considered. The
HOA format generalizes this representation by adding the orders
greater than 1 up to a maximal order M > 1, which leads to
(M + 1)2 components Bσ

mn (m=0, 1, ..., M; n=0, 1, ..., m; σ =
±1) for a full 3D encoding and (2M + 1) components for a 2D
restriction6 (horizontal plane). Equ. 7 is an exact representation
of the acoustic wave under the condition that all the terms up to
the order M = +∞ are kept, which means an infinite number
of components. As soon as the expansion is truncated to a finite
order, the reconstruction of the soundfield becomes erroneous
and the validity of the representation is limited. The validity
should be analyzed in terms of the product kr where k is the
wave number and r is the radius. Usually the reconstruction error
is assumed to be negligable as soon as:

kr ≤ M (8)

which means that for a given frequency f0 the reconstruction is
erroneous inside a circle of radius rmax = M

k0
(i.e. the sweet

spot) or, alternatively, at a fixed radius r0 the reconstruction is
valid for frequencies up to fmax = M

r0
. Indeed the expansion

involved in Equ. 7 can be interpreted as an asymptotic develop-
ment around the origin (kr=0).

2.3. HOA as a format for Spatial Audio

The Bσ
mn signals or HOA components define a new format to

represent and encode a spatial sound scene. This format is really
universal since it is able to represent any soundfield, including
plane or spherical waves. For instance, for a plane wave of mag-
nitude Op and originating from the direction (ϕp, θp), the HOA

6In this case, it is more relevant to apply a Fourier-Bessel expansion
[2]. However, it should be noticed that, for an appropriate restriction to
the horizontal plane, any wave of non-null elevation should be discarded
from the Bσ

mn components, which is not straightforward.
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components are given by:

Bσ
mn(ω) =

Op

4π
Y σ

mn(ϕp, θp) (9)

In the same way, a spherical wave of magnitude Os and emitted
by a sound source located at ~rs(rs, ϕs, θs) with |~rs| > R2 is
represented by:

Bσ
mn(ω) =

Os

4π
i−(m+1) h−m(krs)

k
Y σ

mn(ϕs, θs) (10)

The HOA format has several advantages:

• It is intrinsically discrete, i.e. based on a discrete series
of components, which should, at least theoretically, avoid
spatial sampling7,

• It is a scalable format which relies on a hierarchic repre-
sentation, which means that even the lower order compo-
nents are in themselves sufficient to provide a full descrip-
tion of the sound scene. The contribution of the higher order
components is only to enhance the spatial accuracy and re-
sults mainly in increasing the validity limit (kr)max = M ,
which means enlarging the sweet spot or increasing the fre-
quency bandwidth [0 − fmax]. Scalability allows one to
discard the higher components whenever required by the
limited capacity of storage, transmission, or rendering.

• The representation is straightforwardly (and even intu-
itively) readable in terms of spatial structure, firstly since
radial and angular variations are separated. Secondly each
HOA component is identified to a spatial scanning of sound
components, with an increasing resolution as a function of
the order m. Historically the HOA format is linked to em-
pirical representations of spatial audio which were devel-
opped by sound engineers. Indeed the B format is somehow
a generalization of the M-S (Mitte-Seite) stereophonic for-
mat which combines a omnidirectional and a bidirectional
microphones, in order to record separately the omnidirec-
tional and the left-right informations.

• The expansion of spherical harmonics can be interpreted
as a dual transform between spatial coordinates and spa-
tial frequency. The Bσ

mn components thus define a spatial
spectrum which may be interpreted in terms of spatial fre-
quency or variation.

3. HOA ENCODING

Spatial encoding is the first step which consists in recording the
sound scene and aims at delivering the Bσ

mn signals. In the case
of a plane wave (cf. Equ. 9), the Bσ

mn signals take the form of
the spherical harmonics which can be identified to the directivity
function of microphones (cf. Fig. 1). Thus the first component
(B1

00) corresponds to an omnidirectional microphone, whereas
the 3 components of order 1 (B1

11, B−1
11 , B1

10) are the output of
bidirectional (i.e. ”figure of eight”) microphones aligned with
the x, y and z-axis. Therefore up to the first order, the Bσ

mn

signals could be recorded by a set of conventional microphones.
For higher orders, the directivity becomes more and more com-
plex and the equivalent microphones do not exist. Anyway, even
though the desired directivities would have been available, this
solution is not feasable because it requires to put all the micro-
phones at the same point.

7However it will be shown that, in practice, the microphone arrays
used for HOA recording imply spatial sampling.

3.1. Spherical array of microphones

To get the Bσ
mn signals, the alternative [6] is to record the sound

wave (i.e. the acoustic pressure p(rM , ϕ, θ, ω)) over a sphere of
radius rM and to compute its scalar product with the spherical
harmonics according to Equ. 5:

Uσ
mn(ω) =

1

4πr2
M

Z 2π

ϕ=0

Z π
2

θ=−π
2

p(rM , ϕ, θ, ω)

×Y σ
mn(ϕ, θ) cos θ dθdϕ

(11)

The Bσ
mn signals are deduced from the Uσ

mn signals by a for-
mula similar to Equ. 6, but which takes into account the fact
that the expansion contains only the Bσ

mn components under the
assumption that the Aσ

mn are null (cf. Equ. 7):

Bσ
mn(ω) = EQ(krM )Uσ

mn(ω) (12)

where the equalization term EQ(krM ) is defined as:

EQ(krM ) =
1

imjm(krM )
(13)

From above, it should be realized that two different audio for-
mats are considered:

• the recording format (i.e. the microphone outputs),
• the HOA format (i.e. Bσ

mn signals).

These two formats are fully independent, which means that the
HOA format is not determined by the recording setup. This is a
fundamental property of HOA technology.

3.2. Cardioid microphones

This solution of HOA recording raises a first problem. When-
ever the spherical Bessel function is null, the equalization term
(cf. Equ. 13) is null and the Bσ

mn signals can not be computed.
In order to overcome this problem, it is shown that if not only
the pressure, but also the velocity are recorded, the denominator
of the equalization term contains both the spherical Bessel func-
tion and its first derivative, which are never null simultaneously
[5]. In practice, this result is obtained by replacing the pressure
microphones (p(rM , ϕ, θ, ω)) by cardioid8 sensors. The output
of such microphones c(rM , ϕ, θ) is a linear sum of the acoustic
pressure and its gradient (i.e. the acoustic velocity, except for a
multiplying factor):

c(rM , ϕ, θ) = p(rM , ϕ, θ)−
~∇p(v, ϕ, θ).~n

ik
(14)

These signals are developed in spherical harmonics (cf. Equ. 5):

Cσ
mn(ω) =

1

4πr2
M

Z 2π

ϕ=0

Z π
2

θ=−π
2

c(rM , ϕ, θ, ω)

×Y σ
mn(ϕ, θ) cos θ dθdϕ

(15)

Thus the Bσ
mn are deduced from the Cσ

mn signals by the formula:

Bσ
mn(ω) = EQ(krM )Cσ

mn(ω) (16)

where the equalization term is now:

EQ(krM ) =
1

im[jm(krM ) + kj′m(krM )]
(17)

Another solution consists in putting the microphones around a
sphere and the resulting diffraction modifyies the equalization
term in order that it is never null [6].

8HOA encoding becomes then very similar to WFS encoding.
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3.3. Spatial Sampling

The second problem is that in theory the sound wave
(p(rM , ϕ, θ) and ~∇p(rM , ϕ, θ)) is supposed to be recorded con-
tinuously along the sphere, whereas in practice it is recorded
by a discrete array of sensors, which implyies spatial sampling.
We consider now a microphone array which is composed of
NM transducers. The qth mictrophone’s location is defined by
~rM,q(rM , ϕM,q, θM,q). The question to be solved is to deter-
mine the optimal positioning of the NM microphones, under the
following constraints:

• to minimize the estimate error of the Bσ
mn signals,

• to minimize the number NM of necessary sensors,
• a feasible geometry of the microphone array.

This problem has an exact solution as soon as the spatial
spectrum of the sound wave is band-limited, i.e. the Bσ

mn com-
ponents are all null for any order greater than a maximal or-
der mmax. This is a generalization of the Nyquist-Shannon
sampling theorem for functions defined over a sphere. Indeed
Driscoll & Healy [7] have shown that it is only required to uni-
formly sample the azimuth and elevation angles. Under this
condition, the Bσ

mn signals can be accurately interpolate from
the NM microphone signals cq(ω) = c(rM , ϕM,q, θM,q, ω) [6].
The disadvantage of this solution is that the number of micro-
phones is suboptimal (i.e. NM = 4(M + 1)2 for a recording up
to order M).

In order to decrease the number of microphones, an approx-
imate solution (i.e. B̂σ

mn) is preferred. Starting from Equ. 14,
the acoustic pressure and its derivative are developed in spherical
harmonics (cf. Equ. 7) for each output microphone:

cq(ω) =

MX
m=0

im[jm(krM ) + kj′m(krM )]

mX
n=0

X
σ=±1

Bσ
mn(ω)Y σ

mn(ϕM,q, θM,q)

for q = 1, ..., NM

(18)

which yields a set of NM equations with (M + 1)2 unknowns
which are the Bσ

mn signals. This problem can be reformulated
into a matrix equation:

c = YM WM b (19)

where the vector c contains the microphone outputs cq and the
vector b, the Bσ

mn signals. The matrix YM and WM are given
by:

YM =

2
6664

Y 1
00(ϕM,1, θM,1) Y 1

10(ϕM,1, θM,1)
Y 1

00(ϕM,2, θM,2) Y 1
10(ϕM,2, θM,2)

...
...

Y 1
00(ϕM,NM , θM,NM ) Y 1

10(ϕM,NM , θM,NM )

. . . Y −1
MM (ϕM,1, θM,1)

. . . Y −1
MM (ϕM,2, θM,2)

...
...

. . . Y −1
MM (ϕM,NM , θM,NM )

3
7775

WM =

2
6664

[j0(krM ) + kj′0(krM )] 0
0 [j1(krM ) + kj′1(krM )]
...

...
0 0

0 . . . 0
0 . . . 0
...

...
...

0 . . . iM [jM (krM ) + kj′M (krM )]

3
7775

The first requirement to solve Equ. 19 is that the num-
ber of equations is greater than or equal to the number of un-
knowns, which means that the minimal number of microphones
is (M + 1)2 (instead of 4(M +1)2 for the exact solution). Gen-
erally the solution is obtained by least-square minimization. The
Bσ

mn signals are estimated from the microphone outputs thanks
to the Moore-Penrose pseudoinverse of YM :

b̂ = EM (Yt
M YM )−1 Yt

M c (20)

where Yt
M refers to the transpose conjugate of YM . The matrix

EM is defined by:

EM =

2
6664

1
[j0(krM )+kj′0(krM )]

0 0

0 1
i[j1(krM )+kj′1(krM )]

0

...
...

...
0 0 0

. . . 0

. . . 0
...

...
. . . 1

iM [jM (krM )+kj′M (krM )]

3
7775

The primary cause of estimate error relies on the sensitivity
of the system to any approximation, concerning mainly the mi-
crophone outputs (i.e. signal-to-noise ratio or mispositioning of
the microphones). The equalization term contained in the matrix
WM is another factor of instability. Regularization is therefore
recommended. The diagonal terms of the matrix EM are then
replaced by [6]:

Fm(krM ) =
|im[jm(krM ) + kj′m(krM )]|2

|im[jm(krM ) + kj′m(krM )]|2 + λ2
(21)

where λ is the regularization parameter. The term Fm(krM ) is
a regularization filter.

3.4. Orthonormality condition

In Equ. 20, let us focus on the term:

Yt
M YM .

If the spatial distribution of the microhones over the sphere satis-
fyies the orthonormality property of the spherical harmonics (cf.
Equ. 4), this term reduces to:

Yt
M YM = 1 (22)
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where 1 is the identity matrix. The B̂σ
mn signals become :

B̂σ
mn(ω) =

1

jm(krM ) + kj′m(krM )

1

NM

×
NMX
q=1

cq(ω)Y σ
mn(ϕM,q, θM,q)

(23)

This result is the discrete (i.e. sampled) version of Equ. 16.
If the microphone locations are chosen arbitrarly, the ortho-

normality property is not satisfied in general. The estimate of
the B̂σ

mn signals include then the term Yt
M YM which origi-

nates from the aliasing of spherical harmonics. The matrix ε
quantifyies this ”non-orthonormality” error:

ε = 1− 1

NM
Yt

M YM (24)

Therefore it should be realized that, in our problem, spatial sam-
pling affects not only the soundfield (i.e. c(rM , ϕ, θ)), but also
the spherical harmonics basis (i.e. Y σ

mn(ϕ, θ)). That’s why, be-
sides all the requirements which were previously presented, the
choice of the array geometry must satisfy an additional require-
ment in order to satisfy the orthonormality property. But this is
very difficult in practice. A limited choice of regular polyhe-
drons provides geometries which satisfy this condition for lower
orders. Semi-regular polyhedrons are convenient solutions for
order greater than 2 [6]. More generally, for a given order M, the
spatial distribution of the microphones is optimized by minimiz-
ing the matrix ε.

3.5. Conclusion

To summarize, the process of HOA encoding is characterized by
three main parameters:

• the number of microphones NM ,
• the location of each microphone (ϕM,q, θM,q) over the

sphere,
• the radius of the microphone array rM .

The first question is to choose the maximal order M which is
expected. The value of M determines the minimal number of
microphones:

NM ≥ (1 + M)2.

The next step is to find the regular or semi-regular polyhedron
which is composed of at least (M +1)2 vertices and which min-
imizes the non-orthonormality error (cf. Equ. 24) for orders
m ≤ M . The selected polyhedron imposes the number of mi-
crophones and their location. The last issue concerns the value
of the radius rM which determines the values of the Bessel func-
tions jm(krM ) and j′m(krM ). These latter have a double effect
[6]:

• On the one hand, in Equ. 18, it can be shown that the Bessel
functions act as a low-frequency filter which reduces spa-
tial sampling like an anti-aliasing filter [6]. The cutoff fre-
quency increases with rM . Therefore decreasing the radius
will minimize the spatial aliasing.

• On the other hand, the Bessel functions are also present in
the equalization term (Equ. 17). It is observed that a small
radius leads to the ill-conditioning of the problem (Equ. 20),
especially for low frequencies. Thus, decreasing rM disad-
vantaged the accuracy of the estimate of the B̂σ

mn signals at
low frequencies.

(a) Orange Labs prototypes [6]

(b) University of Maryland [8]

(c) EigenMikeTM(mh-acoustics) (d) Brüel & KjærTM

Figure 2: Example of possible or existing HOA microphones.

As a result, the optimal radius is a difficult compromise between
spatial sampling and low-frequency recording.

This section has described all the steps from the microphone
outputs to the estimate of the B̂σ

mn signals, i.e. the HOA compo-
nents. Recording is performed by a microphone array (cf. Fig.
2). It was explained why cardioid sensors are preferred. The
rules to optimize the array geometry as a function of the record-
ing contraints were clarified. Before investigating HOA decod-
ing, it should be mentioned that the SoundfieldTMmicrophone is
the first example of a HOA recording setup which fully agrees
with the previous requirements, namely a spherical array of car-
dioid microphones which are distributed at the vertices of a reg-
ular polyhedron which satisfyies the orthonormality property up
to order 1 (i.e. tetrahedron).

4. HOA DECODING

4.1. Overview

The decoding step aims at reconstructing the primary acoustic
wave by a loudspeaker setup. The loudspeakers are fed by
signals which are appropriately derived from the Bσ

mn sig-
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nals. In the following, an array of NL emitters is considered.
The location of the lth loudspeaker is described by a vector
~rL,l(rL,l, ϕL,l, θL,l). If sl(ω) refers to the lth loudspeaker in-
put, the secondary wave p̂ (i.e. the wave synthesized by the loud-
speaker array) is:

p̂(~r, ω) =

NLX
l=1

sl(ω)pl(~r, ω) (25)

where pl is the acoustic pressure induced by the lth loudspeaker
at ~r. This latter can be developed in spherical harmonics (Equ.
7):

pl(~r, ω) =

+∞X
m=0

imjm(kr)

mX
n=0

X
σ=±1

Ll
σ
mn(ω)Y σ

mn(ϕ, θ)

(26)
The Ll

σ
mn signals are the HOA components for the acoustic

wave radiated by the lth loudspeaker. This wave may be of any
kind: spherical, plane or more complex [9]. It is also possi-
ble that any loudspeaker has a specific acoustic radiation which
differs from the other ones. Theoretically the geometry of the
loudspeaker array is arbitrar and is not limited to a sphere or a
circle (2D rendering).

The primary wave to be synthesized is described by its HOA
components (i.e. the Bσ

mn signals obtained at the encoding out-
put). To derive the sl signals to feed the loudspeaker, the spher-
ical harmonic expansion of the primary (Equ. 7) and the syn-
thesized (Equ. 25 & 26) waves are matched (mode-matching
principle):

Bσ
mn =

NLX
l=1

sl(ω)Ll
σ
mn(ω) (27)

which yields a set of (M + 1)2 equations with NL unknowns
which are the loudspeaker input sl. This problem can be refor-
mulated into a matrix equation:

b = Ls (28)

where the vector s contains the louspeaker input signals sl. The
matrix L is composed of the Ll

σ
mn components for each loud-

speaker:

L =

2
6664

L1
1
00(ϕM,1, θM,1) L2

1
00(ϕM,2, θM,2)

L1
1
10(ϕM,1, θM,1) L2

1
10(ϕM,2, θM,2)

...
...

L1
−1
MM (ϕM,1, θM,1) L2

−1
MM (ϕM,2, θM,2)

. . . LNL
1
00(ϕM,NL , θM,NL)

. . . LNL
1
10(ϕM,NL , θM,NL)

...
...

. . . LNL
−1
MM (ϕM,NL , θM,NL)

3
7775

The solution of the problem depends on the number NL of
loudspeakers in respect with the order M. Three cases should be
distinguished [10]:

• NL < (M +1)2: The problem is overdetermined. No exact
solution exists. An approximate solution can be found by
least-square minimization.

• NL = (M + 1)2: The matrix L is square. If its inverse
exists, the solution is given by:

s = L−1b (29)

• NL > (M + 1)2: The problem is underdetermined, which
means that it has an infinity of solutions. The solution which
minimizes the energy of the loudspeaker signals is obtained
by using the pseudoinverse of L:

s = Lt(LLt)−1b (30)

The optimal number NL of loudspeakers is a worthwhile is-
sue. The value NL = (M + 1)2 (NL = 2M + 1 for a 2D
rendering) can be considered as optimal as it minimizes the re-
construction error [10]. However, it is observed that in this case,
when a virtual sound source is located in the direction of a loud-
speaker, only this latter is switched on, which causes audible
artefacts in terms of loudspeaker transparency and homogeneity
of the sound rendering [11]. This effect is eliminated as soon
as NL becomes greater than (M + 1)2. Nevertheless listening
tests confirm that increasing the number of loudspeakers beyond
(M +1)2 is detrimental to the audio quality, since the soundfield
is likely to become instable, especially when the listener moves
his(her) head [12].

4.2. Decoding matrix

The loudspeaker signals are derived from the Bσ
mn signals

thanks to the decoding matrix D:

s = Db (31)

From Equ. 29 or 30, the decoding matrix is defined by:

D = L−1 or Lt(LLt)−1 (32)

This matrix performs a kind of transcoding of the Bσ
mn signals

to the loudspeaker space [5]. The HOA format (i.e. the Bσ
mn sig-

nals, cf. Section 2.3) is thus not only independent of the record-
ing format, as previously mentionned, but also independent of
the rendering format (i.e. the loudspeaker format or D format
[13]).

The decoding matrix is determined by the loudspeaker lay-
out (i.e. number and geometry). In theory it is able to account
for any setup. Nevertheless it is recommended to prefer a regular
layout, such an uniform sampling of the sphere, which yields a
simple and stable matrix. The matrix given by Equ. 32 follows
a particular rule of decoding which is called ”basic decoding”
and which aims at the pure reconstruction of the acoustic wave.
Other strategies exist, which include additional constraints while
solving the decoding problem (in the case NL > (M+1)2) [11].
One strategy is to maximize the signals of the loudspeaker which
are the closest to the virtual source location. Another one is to
minimize the signals of the loudspeakers which are opposite of
the virtual source.

4.3. Regular array

Even though the loudspeaker layout can be chosen arbitrarly,
which is a remarkable advantage of HOA technology, it is pre-
ferred, whenever there is no constraint, to opt for a regular setup.
For 3D rendering, it consists in placing the loudspeaker over the
surface of a sphere of radius rL. The loudspeaker distribution is
considered as regular if it satisfyies the orthonormality property
of the spherical harmonics (Equ. 22), i.e.:

LtL = 1 (33)
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In a similar way as in Section 3.4, a convenient strategy is to
locate the loudspeakers at the vertices of a regular or semi-
regular polyhedron. Since such a polyhedron with exactly NL =
(M + 1)2 (NL = 2M + 1 in the 2D case) vertices is seldom
found, the polyhedron for which the number of vertices is the
closest to (M + 1)2 with NL > (M + 1)2 is chosen. The de-
coding9 matrix then reduces to:

D = Lt (34)

In the case of 2D rendering, a regular layout is obtained by
equally spacing the loudspeakers along a circle of radius rL.

If the loudspeakers radiate spherical waves, the matrix L is
defined by:

L = WLYL (35)

where:

YL =

2
6664

Y 1
00(ϕL,1, θL,1) Y 1

00(ϕL,2, θL,2)
Y 1

10(ϕL,1, θL,1) Y 1
10(ϕL,2, θL,2)

...
...

Y −1
MM (ϕL,1, θL,1) Y −1

MM (ϕL,2, θL,2)

. . . Y 1
00(ϕL,NL , θL,NL)

. . . Y 1
10(ϕL,NL , θL,NL)

...
...

. . . Y −1
MM (ϕL,NL , θL,NL)

3
7775

and:

WL =

2
6664

(−i) 0 0

0 −h−1 (krL)

k
0

...
...

...
0 0 0

. . . 0

. . . 0
...

...

. . .
h−

M
(krL)

k
i−(M+1)

3
77775

Under the assumption that the loudspeakers emit plane waves,
the term WL is omitted.

4.4. Conclusion

With Section 3 and 4, the overall processing from the recording
of the sound scene (primary wave p) to its rendering (synthesized
wave p̂) has been described. The quality of the reconstruction of
the acoustic wave is mainly determined by the encoding order M
and the estimate error of the signals B̂σ

mn(ω). This issue of how
to assess this quality is examined now.

5. ASSESSMENT OF THE SYNTHETIC SOUND WAVE

In order to assess the reproduction quality of a virtual sound
scene, various tools and criteria are available. A first strategy
is to observe the acoustic waves (either measured or simulated)
[4, 11, 14]. The synthetic wave (i.e. the wave p̂ reproduced
by the loudspeaker array) is compared with the target wave (i.e.
the primary soundfield p), which allows one to judge to what
extent the wavefront and other macroscopic spatial properties

9In [10], Poletti proposed a new interpretation of this solution.

are faithfully reconstructed. Another way is to filter all the in-
formation provided by the acoustic waves in order to focus on
the information which is used and analysed by the auditory sys-
tem. This can be done by listening tests, either localization tests
[15, 16, 17, 12] or multi-criteria assessments [18, 13, 19]. An al-
ternative is to process the signals perceived at the entrance of the
listener’s ear by a perception model in order to compute percep-
tive attributes which account for how the soundfield is perceived
[16, 12, 9, 20]. For instance, it is possible to compute the local-
ization cues (for instance the Interaural Time Difference, ITD,
and the Interaural Level Difference, ILD). Models of sound lo-
calization allow then one to estimate the perceived location of
the virtual sound source for comparison with the target location
[16, 12]. The velocity and energy vectors which were introduced
by Gerzon [1] are first examples of such models. The source
timbre is another attribute which is of interest for the assessment
of the reproduction quality [9].

A comprehensive toolkit of objective assessment include:

• the acoustic pressure p̂(ω,~r) measured or computed for a
fine spatial sampling of the listening area (i.e. at the center
of the loudspeaker array, off-centered location, and at the
neighborhood of the loudspeakers),

• the loudspeaker outputs (magnitude and phase), in order
to quantify the reconstruction effort and its ”reasonabless”
in terms of energy and loudspeaker distribution,

• the localization cues, in order to estimate the accuracy of
the perceived location of the virtual sound sources,

• listening tests which are helpful to investigate perceptive
attributes other than localization.

The theory of auditory localization teaches us that at least
three main localization cues should be considered [21]:

• the ITD and the ILD which govern the lateralization (i.e.
perception of the source azimuth),

• the Spectral Cues (SC) which are spectral features present
in the ear signals (mainly over the band [4-13kHz] [22]) and
which are responsible for the perception of elevation.

These localization cues can be estimated from the signals at the
entrance of the listener’s ear. The signals are either measured by
a dummy-head or by microphones inserted in the earcanal of a
subject, or simulated. In the latter case, Head Related Transfer
Function (HRTF) are used in order that the modelling takes into
account the interaction of the acoustic wave with the listener’s
morphology. The ITD is for instance estimated from the differ-
ence between the mean low-frequency phase delay [0-2kHz] of
the left and right ear signals [23]. The ILD is computed as the
ratio of the high-frequency [1-5kHz] power spectrum (dB) of the
left and right ear signals [24]. As for the SC, instead of examin-
ing the spectrum pattern, it is proposed to use the Inter-Subject
Spectral Difference (ISSD) which was introduced by Middle-
brooks to compare two HRTFs [25]. The ISSD is defined as the
variance of the difference of two power spectra. In the present
problem, it is applied to measure the dissimilarity between the
SC reproduced at each ear by the primary wave and the syn-
thetic one. Therefore, with the ITD, the ILD and the ISSD, it is
expected to assess the rendering of localization cues in the vir-
tual sound scene, by comparison with those present in the orig-
inal scene. For a comprehensive analysis, the localization cues
should be examined for various locations in the overall listening
area. For each location, the orientation of the listener’s head may
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also be varied in order to observe the effect of listener’s rotation.

6. CONCLUSION

HOA technology was investigated from several points of view:
recording, rendering, format and assessment of spatial audio.
One objective was to fill the gap between several issues: the-
ory and practice, encoding and decoding, acoustics and psy-
choacoutics. Even though theoretical issues of HOA technology
are now better understood and mastered, the practice of HOA
recording and reproduction still needs further investigation to
answer questions such as: what is the optimal encoding order
M beyond which no quality improvement can be perceptually
expected?, what is the audible effect of increasing the number
of loudspeakers for a fixed order M?, what is observed when
the listener moves (off-center listening position) or turns his(her)
head?...
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